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There are distinguishing features or “hallmarks” of cancer that
are found across tumors, individuals, and types of cancer, and these
hallmarks can be driven by specific genetic mutations. Yet, within
a single tumor there is often extensive genetic heterogeneity as evi-
denced by single-cell and bulk DNA sequencing data. The goal of this
work is to jointly infer the underlying genotypes of tumor subpop-
ulations and the distribution of those subpopulations in individual
tumors by integrating single-cell and bulk sequencing data. Under-
standing the genetic composition of the tumor at the time of treat-
ment is important in the personalized design of targeted therapeutic
combinations and monitoring for possible recurrence after treatment.

We propose a hierarchical Dirichlet process mixture model that
incorporates the correlation structure induced by a structured sam-
pling arrangement and we show that this model improves the quality
of inference. We develop a representation of the hierarchical Dirichlet
process prior as a Gamma-Poisson hierarchy and we use this repre-
sentation to derive a fast Gibbs sampling inference algorithm using
the augment-and-marginalize method. Experiments with simulation
data show that our model outperforms standard numerical and sta-
tistical methods for decomposing admixed count data. Analyses of
real acute lymphoblastic leukemia cancer sequencing dataset shows
that our model improves upon state-of-the-art bioinformatic meth-
ods. An interpretation of the results of our model on this real dataset
reveals co-mutated loci across samples.

1. Introduction. Intratumor heterogeneity is a major obstacle for the
diagnosis and treatment of cancer. Genetic mutations that arise as the tu-
mor grows produce clonal subpopulations (Vogelstein and Kinzler, 2004;
Martincorena and Campbell, 2015), and resection of a fraction, but not
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all, of the tumor can alter the tumor environment in ways that provide a
selective advantage to a remaining tumor clonal subpopulation leading to re-
currence (Predina et al., 2013). Genomic instability in tumor cells results in
a tumor where no single clonal population dominates the population (Hana-~
han and Weinberg, 2011). As a result, at a given point in time in the tumor
development process, the population of tumor cells is a mixture of multiple
genetic subpopulations (Lee et al., 2015; Russnes et al., 2011). The genetic
composition of the tumor at the time of treatment is a critical factor in the
design of targeted therapeutic combinations (Kyrochristos et al., 2019).

Tumor clonal subpopulations are genetic subpopulations whose constituent
cells have acquired selected clonal driver mutations as well as unselected pas-
senger mutations (Stratton, Campbell and Futreal, 2009). Such subpopula-
tions are not necessarily completely genetically homogeneous; rather, they
have greater similarity to each other compared to tumor cells that are not
in the subpopulation (Chowell et al., 2018). Subclonal populations are sub-
populations that represent less than 10% of the total tumor (Loeb et al.,
2019). Additionally, a given patient sample can contain both tumor cells
and normal cells; the purity of the sample is the ratio of cancer cells to total
cells in the sample (Aran, Sirota and Butte, 2015).

The existence of clonal subpopulations has been known for many years (Now-
ell, 1976). Several reviews have covered the maintenance of heterogeneity in
cancer samples (Bonavia et al., 2011; Marusyk, Almendro and Polyak, 2012).
Gerlinger et al. (2012) showed that biopsies from regionally distinct loca-
tions in a solid tumor have different genetic mutations. Alizadeh et al. (2015)
reviewed efforts to build consensus on definitions around tumor heterogene-
ity and highlights how understanding heterogeneity can inform therapeutic
options. While the significance of tumor heterogeneity in treatment efficacy
has been established, rigorous statistical modeling of tumor heterogeneity
presents many challenges (Andor et al., 2016; Beerenwinkel et al., 2015).

Next-generation sequencing (NGS) has enabled the potential for the iden-
tification of subclonal populations in heterogeneous tumors with targeted
sequencing of bulk samples (Campbell et al., 2008). Experiments that use
material from millions of cells (bulk samples) can capture broad changes,
but risk providing an average measurement that is not representative of
the genetic state of any individual cell (Navin, 2015; Kalisky and Quake,
2011; Gawad, Koh and Quake, 2016). Recent advances in single-cell DNA
sequencing have enabled researchers to collect sequence data using material
from only a single cell (Treutlein et al., 2014). While single-cell experiments
can capture the genetic state of the individual cell, sampling enough cells to
gain a representative sample of population is expensive. Therefore, there is a
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need to integrate information from both bulk and single-cell data to obtain
a comprehensive understanding of subclonal populations in an individual
tumor as well as across individuals.

Location

Sample 1

Location

Subpopulation 1

Subpopulation 2

* e

Fig 1: Prototypical example of tumor heterogeneity and clonal subpopulations.

To summarize, Figure 1 shows a prototypical example of a heterogeneous
tumor. A solid tumor is composed of three clonal subpopulations shown as
divisions and numbered 1, 2, and 3. Three samples are obtained from the
solid tumor; two are bulk, regional samples (samples 1 and 3) and one is
a single cell sample (sample 2). DNA sequencing data from these samples
is represented by bars above each genomic locus where the height of the
bar is proportional to the number of observations of the nucleobase at the
locus and the color represents the proportion of the observations with a
mutated base. Subpopulation 1 is characterized by mutations at genomic lo-
cations 3(A) and 6(C) and subpopulation 2 is characterized by mutations at
genomic locations 5(G) and 6(T). These true subpopulation genotypes are
unknown and are inferred through the sequencing data from the biological
samples. Sample 1, a bulk sample, is collected in a way such that a fraction
of the cells are from subpopulation 1 and a fraction are from subpopulation
2 resulting in a mixture of observations from both subpopulations. Addition-
ally, sequencing errors or passenger mutations may introduce observations
of nucleobases that are not part of any true subpopulation — for example,
at genomic locus 1. Bulk samples typically have good coverage and depth
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across genomic locations as shown by the presence of observations (bars)
at each genomic locus and the relatively high height of the bars. For sam-
ple 2, the single-cell sample from subpopulation 2, the coverage is sparse
and the depth is low, but the sample has does contain data that is relevant
to inferring the single underlying subpopulation genotype. Sample 3 is a
bulk sample from subpopulation 2 with no heterogeneity. In this sample a
passenger mutation at genomic location 2 obscured the true subpopulation
(2) genotype. This work aims to resolve the subpopulation genotypes and
the distribution of the subpopulations for each tumor using multiple tumors
samples from multiple individuals.

1.1. Problem Setup. The fundamental unit of sampling in NGS data is
the read. A read is a short DNA sequence of 100-400 nucleobases (bases) that
maps to a specific location in a reference genome; a typical DNA sequencing
run produces millions of such reads. We denote the observed DNA base
in read r € {1,..., Rs} that maps to genomic location I € {1,...,L} in
sample s € {1,...,S5} as zq, € B={A,C,G,T}. Since there are only four
DNA bases, we have a 1-1 mapping from B to {1,2,3,4}. When a genomic
location has only two bases that are observed in a population the location
is called biallelic and the sample space can be reduced to zg,. € {A,a},
where A is the major (most common) base and a is the minor (second most
common) base. A read-count vector ng = (ngp)peg can be constructed by
summing over the reads and conditioning on a genomic location, ng, =
>, Lzg, = b. The coverage at a given location is ) ;5 np. Goodwin,
McPherson and McCombie (2016) present a comprehensive review of NGS,
associated technologies, and summary statistics.

Single-cell sequencing data and bulk sequencing data differ in certain
read-level statistics, but the fundamental observational unit for both is the
read. DNA from single cells must be amplified by targeted amplification
if a restricted region is of interest or whole genome amplification if the
whole genome is of interest. The whole genome amplification process in-
troduces false positives—apparent mutations that are not present in the
original biological material and allelic dropout—heterogeneous alleles that
appear homogeneous due to incomplete amplification of both alleles (Za-
far et al., 2016). Both errors can be caused by founder effects due to early
stage errors in polymerase chain reaction amplification. Additionally, single-
cell sequencing data suffers from incomplete coverage of all loci and low
sequencing depth (Zhang et al., 2019). In our problem setup each single-cell
sample is treated as a single sample from the tumor.

Multiple NGS sequencing runs from an experiment are collected into a
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dataset, but the runs that comprise the dataset are rarely independent or
identically distributed. In cancer sequencing datasets, there may be multiple
individuals, each individual may have multiple solid tumors, and each solid
tumor may have multiple biopsies. Data from model system experiments may
have multiple genetic backgrounds and multiple environmental conditions.
There may be multiple biological replicates and within each biological repli-
cate there may be multiple technical replicates. A nested sampling structure
produces samples that are correlated, and it is important to account for that
correlation structure in the analysis of the data. In an experimental study,
Paisley (2020) showed that a hierarchical Dirichlet process model performed
better than a flat model when the number of samples at the lowest level of
the sampling hierarchy was small. This data scenario is exactly the one we
have with many NGS datasets.

1.2. Our contributions. The goal of this work is to jointly infer the un-
derlying genotypes of tumor subpopulations and the distribution of those
subpopulations for each tumor sample by making use of both single-cell and
bulk sequencing data from multiple tumor samples in multiple individuals.
In Section 2 we propose a Bayesian nonparametric hierarchical Dirichlet pro-
cess mixture model for combining information from bulk and single-cell next-
generation DNA sequencing data from multiple samples and from multiple
individuals. This hierarchical Dirichlet process mixture model has tunable
hyperparameters that control the a priori concentration of the subpopula-
tion distribution for each sample; this hyperparameter can be estimated in
an empirical Bayes setting or set directly when the concentration is known—
for example, when the sample is from a single-cell. The hierarchical structure
models the nested sampling structure in real NGS datasets that arises from
drawing multiple bulk and single-cell biopsies from multiple individuals. In-
ference with our model provides estimates of the subpopulation genotypes
and the distribution over subpopulations in each sample. In Section 3 we rep-
resent the model as a Gamma-Poisson hierarchical model and in Section 4
we derive a fast Gibbs sampling algorithm based on this representation us-
ing the augment-and-marginalize method. This representation and inference
algorithm are generalizable to other models that make use of a hierarchical
Dirichlet process prior and can be employed to derive a fast Gibbs sampler
with analytical sampling steps for other models.

This work aims to identify subpopulations that contain both somatic and
germline mutations. In any tumor sample, some “normal” cells are likely
to be present — these contain germline mutations, but not somatic muta-
tions. Therefore, the normal subpopulation is a valid latent subpopulation
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in the context of our problem setup. Furthermore, germline mutations that
are shared across multiple individuals in a study population will be evi-
dent in inferred latent subpopulation genotypes. We compare our model to
related work on modeling heterogeneous NGS data using simulation experi-
ments (Section 5) and we analyze real NGS data from a acute lymphoblastic
leukemia (Section 6). Statistical inference provides estimates of the sub-
population genotypes and the distribution of subpopulations in individual
samples with rigorous Bayesian uncertainty estimates. Since our inference
algorithms produce samples from the full posterior distribution, our methods
allow for rigorous quantification of the uncertainty in our estimates.

1.3. Related Work. We briefly review related work in the area of Bayesian
nonparametric modeling using the Dirichlet process and in the area of bioin-
formatic analysis of genetically heterogeneous samples.

1.3.1. Hierarchical Dirichlet Process Mizture Models. In real data sets
there is often structural information that can increase the utility of the data
towards an inferential task. One of the most common pieces of structural
information is the a priori similarity among related samples. As an example,
suppose that we have a set of news articles and we are interested in drawing
inferences about the topics in the articles. A naive model might assume
that all articles are independent samples; a more sophisticated model would
incorporate information about the authorship—articles by the same author
are a priori likely to be more similar to each other than to articles by different
authors. In the Bayesian formalism, the hierarchical Dirichlet process enables
one to incorporate such structural information in the inference process in a
rigorous model-based way.

Dirichlet Process. The Dirichlet process, G ~ DP(ay, Gp), is formally a
measure on measures where ag > 0 is the scaling parameter and Gy is
the base measure (Ferguson, 1973). A constructive definition is the stick-
breaking representation (Sethuraman, 1994)

where
or ~ Go, WkITF;CH(l—TI'D, ﬂ';NBeta(l,ao).

The sequence 7 = (7,)72, can be interpreted as a random probability mea-
sure on the positive integers and each integer is associated with a draw from
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the base measure. A second perspective of the Dirichlet process makes the
clustering property more evident. The Chinese restaurant process (Aldous,
1985) describes a stochastic process where a draw 6; associates with a pa-
rameter ¢, according to all of the previous pairs,

K

mp (&%)
0i|601,...,0i—1,00,Go ~ kz_l Cis a05¢k +

1— 1+

GO)

where my, is the count of #;’s that are equal to ¢;. The conditional distri-
bution is a mixture distribution where the weights are determined by the
previous draws and ag. If ag is large, the mixture distribution is weighted
towards new draws from the base measure, Gy, and if aq is small, it was
weighted towards previously sampled values of ¢, where ¢1, ..., ¢x are the
distinct values taken on by 61,...,6;_1. For this reason, «q is called the
concentration parameter of the Dirichlet process.

Dirichlet Process Mixture Model. The Dirichlet process is a natural non-
parametric prior for models that need a probability measure. In particular,
it is useful for mixture models because they employ a probability measure
as a latent or unobserved variable. In parametric models, a natural prior for
this latent variable is a Dirichlet distribution. By substituting a Dirichlet
process, the number of mixture components scales with the size of the data
set and in the asymptotic limit of the sample size, n — oo, the number of
components goes to infinity, K — oo. The Dirichlet process mixture model
can be written as
0ilg~g

where F(60;) is the sampling distribution of the observed data, x;. The
Dirichlet process mixture model can be construed as the infinite limit of
a particular finite mixture model (Neal, 1992; Rasmussen, 2000; Green and
Richardson, 2001; Ishwaran and Zarepour, 2002). The finite mixture model
is

7 | ag ~ Dir(aw/K, ... ,a0/K) zi|w~T
¢r | Go ~ Go i | zi, (¢r)fer ~ Flo,),
where ¢, is the parameter for mixture component k£ drawn from prior distri-
bution Gy, and z; is an indicator of the mixture component. In the limit as

K — oo, this finite mixture model converges in distribution to the Dirichlet
process mixture model (Ishwaran and Zarepour, 2002).
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Hierarchical Dirichlet Process Mixture Model. The hierarchical Dirichlet
process is a hierarchical extension of the Dirichlet process mixture model
where the prior over the mixing Dirichlet process is itself drawn from a
Dirichlet process. Given a base measure H and concentration parameter -,
the hierarchical Dirichlet process mixture model is

GO | ’)/,H ~ DP(’}/,H) Gj | Oéj,Go ~ DP(O&j,Go)
b | G; ~G; zji | 0ji ~ F(65i)

This hierarchical stacking can be extended in the direction of the prior.

1.3.2. Bioinformatic models for clonal subpopulation inference. There
are many methods for inferring the clonal genetic subpopulation structure
from next-generation DNA sequencing data. A subset of these methods are
based on a rigorous statistical model. We briefly review the most popular
model-based bioinformatic methods for subpopulation structure inference.
A more complete review of methods for subclonal inference is provided in
Appendix A. PurityEst (Su et al., 2012) and PurBayes (Larson and Fridley,
2013) make use of paired tumor-normal samples. Roth et al. (2014) proposed
a Dirichlet process mixture model for subpopulations called Pyclone. Phy-
loWGS uses a Bayesian nonparametric model to reconstruct genotypes of
the subpopulations from sequencing data (Deshwar et al., 2015). Bayclone
uses an Indian buffet process prior over the genotypes for the subpopula-
tions (Sengupta et al., 2015). Sciclone uses a hierarchical Bayesian mixture
model to infer subclonal populations (Miller et al., 2014). CloneHD inte-
grates information from copy number data, B-allele frequency, and somatic
nucleotide variants to infer clonal subpopulations (Fischer et al., 2014). Cloe
takes the innovative approach of incorporating a prior over phylogenetic
trees (Marass et al., 2016). Treeclone is a nonparametric Bayesian model
for reconstructing the clonal subpopulation phylogeny and inferring tumor
heterogeneity (Zhou et al., 2019a).

Our work. Our work handles multiple subpopulation components in the
tumor unlike paired tumor-normal methods — paired data is not required.
Like Pyclone, we use a Dirichlet process prior over the samples. Our model
uses a simpler prior over the subpopulation genotypes compared to Bayclone,
and uses a hierarchical Dirichlet process prior over the samples instead of
an Indian buffet process. This modeling choice enables us to focus on pos-
terior inference for the subpopulation genotypes and the distribution over
genotypes.It has been shown that while the posterior distribution of the
Dirichlet process is consistent, inference on the number of components is
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not (Miller and Harrison, 2013, 2014). For this reason, we focus on the pos-
terior distribution of subpopulation genotypes and the posterior distribution
of subpopulations for each sample.

2. Hierarchical Dirichlet Process Mixture Probability Model.
The full hierarchical Dirichlet process mixture model can be decomposed
into the following components: the sampling model (Section 2.1), the hier-
archical prior (Section 2.2), and the hyperparameters (Section 2.3). The full
model and the complete posterior distribution is summarized in Section 2.4.

2.1. Sampling Model. The model presented here assumes biallelic vari-
ants with the major allele denoted by A and the minor allele denoted by
a, but the model is easily adapted for a situation where x5 records the
observed DNA base {A,C,G,T}. The set of genotypes is denoted G €
{AA, Aa, aa} for a diploid genome and can equivalently be represented as
G € {0,1,2}. We assume a conditional categorical sampling model for zg,,

(1) Zsir|zsr ~ Categorical (T} + hys,, )

AA Aa aa

1
(2) ’—I}SZA(lEfA 2 )
2

s s

is the genotype-base transition matrix. This matrix is typically the product
of a sequencing error model and can be specified for a particular location
[ and for a particular sample s. The hyperparameters {€/,,€},} can be es-
timated from historical data on the sequencing error rate at location [ and
set distinctly for bulk sequencing samples or single-cell samples due to the
dependency on the sample s = (i, 7).

The genotype for subpopulation k at location [ is Ay, € G. The categorical
variable hj; can be equivalently represented by categorical indicator vector
hy. € {0, 1}|g|. The conditional distribution of the genotype of subpopulation
k at location [ is

(3) hlk|al ~ Multi (1, al) .

forall l =1,...,L and k = 1,..., K. A simple independent prior for h;

using Hardy-Weinberg equilibrium can be used, a;; = (%, %, i), or the prior

should be adjusted based on population frequency information.
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The integer-valued variable zg. € {1,2,..., K} indicates the genetic sub-
population that produced read r in sample s. It has a categorical conditional
distribution

(4) Zsr|gs ~ Categorical (gs) ,

where g, is the distribution over subpopulations for sample s.

2.2. Hierarchical Prior. A key aspect of our model in the context of DNA
sequencing datasets is a hierarchical Bayesian nonparametric prior on the
distribution of subpopulations in sample s. Let sample s be generated by first
drawing individual i = 1, ..., N from a population and then drawing biopsy
j =1,...,N; within individual i. Therefore, the sample is s € {(3,7) | i =
1,...,N, j=1,...,N;}. The following hierarchical Dirichlet process prior
is used for modeling g = g;;,

(5) gij ~DP (vij,4i) , (distribution of subpopulations in biopsy j)
(6) gi~DP (BZ-, g” ) ,  (distribution of subpopulations in individual 7)
(7) g" ~DP (ao, g” ') . (distribution of subpopulations in population)

Here, g;; is the distribution over subpopulations in biopsy j from individual
i, g} is the distribution over subpopulations in individual 4, and g” is the dis-
tribution over subpopulations in the population from which the individuals
are drawn. The top level prior measure g”’ together with the concentration
parameter g defines the prior over the population-level distribution of sub-
populations. The products of inference in this model include the posterior
distribution of these quantities.

2.3. Hyperparameters. The hyperparameters ag, §;, and +;; are impor-
tant for modeling single-cell and bulk sequencing experiments. If ~;; is set
to a small value, then g;; is expected to be concentrated to one of the sub-
populations. Therefore, if sample s = (7, j) is known to be from a single-cell,
vi; can be set to a small value to represent an expected concentration to
a single subpopulation. If the sequenced sample is a bulk of cells or an en-
tire solid tumor, ~;; can be set to a large value to represent an a-priori
expectation of tumor heterogeneity. Hyperparameters ag and §; represent
prior information about subpopulation concentration at higher levels of the
model. If 5; is set to a small value, the distribution of subpopulation for
individual 7 is concentrated on a small number of subpopulations. Since g;;
is conditioned on g/, the individual concentration parameter, f;, influences
the concentration of all of the biopsies within the individual. This hierarchi-
cal concentration in the model is congruent with the biological expectation
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that if a subpopulation is not present at the level of the individual, it would
not emerge spontaneously in a sample from the individual. If «q is set to a
small value, the subpopulation distribution is, a-priori, concentrated at only
a few subpopulations. The inclusion/exclusion criteria for the dataset can
therefore influence the concentration of the entire population. If the dataset
contains only a small subset of the entire population, for example a subset
of triple-negative breast cancer patients in a clinical trial, it may be reason-
able to set ag to a small value. In the standard Bayesian paradigm, if the
concentration parameter is not known a-priori, the associated parameters
can be endowed with a Gamma distribution as in Escobar and West (1995).

2.4. Complete Hierarchical Dirichlet Process Model. By combining the
sampling model and the hierarchical prior the complete hierarchical Dirichlet
process model is

hj, ~ Multi (1, a;), for each (1, k),
g//‘ao?g/// ~ DP (Oéo,g”/) :
gi|Bi,g" ~ DP (B;,g") , for each 1,
(hDP) gzg’71]7g; ~ DP (PYZja g;) ’ for each (7'7.7)’
Zijr|gi; ~ Categorical (g;;) , for each (i,7,7),

Tijr| 2ijr, By ~ Categorical (Tl(i’j) . hlzijr) . for each (1,4, ], 7).

A graphical model representation of Model hDP is shown in Figure 2.
Model hDP is conceptually compared with other common hierarchical mod-
els for factorizing count data in Appendix D.

The object of inference is the posterior distribution function for Model hDP:

N
p(h.g".g', g, z|x;a, 9", a0, B,7,T) x p(g"|g", a0) [ [ (gilg”, B:)
=1
N; Ry L N
1 2(giilgl. i) T p(ziselgin) T ol zige T h)p(halan).

j=1 r=1 =1

Next, we derive a Markov chain Monte Carlo (MCMC) inference algorithm
to estimate this posterior distribution.

2.5. Inference Algorithm for Hierarchical Dirichlet Process Model. 1t is
well-known that a Dirichlet distribution with parameter & converges to a
Dirichlet process as K — oo (Teh et al., 2006; Ishwaran and Zarepour,

2000). We employ this fact to derive an MCMC algorithm to draw samples
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Fig 2: Graphical model representation of Model hDP.

from the posterior distribution. The details of the derivation of the truncated
Dirichlet process inference algorithm are in Appendix B. The algorithm itself
is shown in Algorithm 1.

3. Hierarchical Gamma-Poisson Probability Model. The infer-
ence algorithm for Model hDP employs Metropolis-Hastings steps that can
be computationally expensive for large datasets. To address this issue, we
reformulate the model as a hierarchical Gamma-Poisson model. This refor-
mulation allows us to use the augment-and-marginalize method developed
by Zhou et al. (2012) to derive a fast inference algorithm that uses only
analytical sampling steps for updates.

3.1. Sampling Model. In the hierarchical Dirichlet process model, the
observed data is the base for each read; in this Gamma-Poisson reformu-
lation, the observed data is count of reads associated with each base. Let
Yiiw € {0,1,2,...} be the read count of base b € B at location I € {1,...,L}
in biopsy j € {1,...,N;} of individual ¢ € {1,..., N} (recall we have defined
a sample as the pair s = (4,7)). We assume the read count has a conditional
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Algorithm 1: MCMC sampler for Model hDP

1 foreach MCMC sample t do

2 foreach (1,k) do

3 ‘ Sample hl(,? ~ p(hik|h—ik, x, z,a;, T) using Gibbs

4 end

5 foreach (i,j,r) do

6 ‘ Sample zz(]tl ~ p(2zijr|z—ijr, @, h,g) using Gibbs

7 end

8 foreach (i,j) do

9 ‘ Sample gg-) ~ p(gijlg—ij, z,g’,vi;) using Metropolis-Hastings
10 end
11 foreach (i) do

12 ‘ Sample g;(t) ~ p(gilg_i,g,9", Bi) using Metropolis-Hastings
13 end

14 Sample g~ ) ~ p(g”|g’, 9", ao) using Metropolis-Hastings
15 end

Poisson distribution,

K

(8) Yijiv|Oijk> Prox ~ Pois Z ik Drvk
k=1

Note that while the conditional distribution is Poisson, the marginal distri-
bution is negative binomial as shown in Equation (15). The rate parameter of
the Poisson is a sum over K subpopulations where the summand is the prod-
uct of two factors. The first factor 6, is the rate or propensity of subpopula-
tion k in sample s = (4, 7). The second factor is ¢ypr = (T}~ hyi)p € (0,1) and
can be interpreted as the probability of base b in subpopulation k at loca-
tion [. This representation requires the same genotype-nucleobase transition
matrix across all samples.

3.2. Hierarchical Prior. We assume the following hierarchical gamma
prior for propensity 6;;:

Oijr ~ T (Hgk, 1) , (propensity of subpopulation k in biopsy j
(9) i~ T (9%, 1) , (propensity of subpopulation k in individual i

)

)

0y ~T (po/K,T), (propensity of subpopulation k in population)
( )

po, T ~ I (€g,€0) . (latent parameters

The form of the gamma distribution is I" (a, b) where a is the shape parameter
and b is the rate parameter. While the gamma distribution is the conjugate
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prior to its own rate parameter, this hierarchical prior is in a non-conjugate
configurations since it chains through the shape parameter. Nevertheless,
this construction yields closed-form complete conditional distributions via
an auxiliary variable augment-and-marginalize update that is derived in
Section 4.

3.3. Hyperparameters. The hyperparameter ¢y can be set to a small value
for a diffuse prior over the parameters pg and 7. If it is known that the entire
data set is relatively concentrated on only one subpopulation ¢y can be set
to a smaller value such as one. Or, if there is a priori information about the
expected number of subpopulations, the shape and rate parameters can be
adjusted accordingly. The distributions are not restricted to depend on a
single hyperparameter.

3.4. Complete Gamma-Poisson Model. The complete Gamma-Poisson

model is
hy, ~ Multi (1, a;) , for each [,
/)077 ~ F(ﬁo,EO)
T(po/K,T), for each k,
(bGP) e~ T (07,1), for each (i, k),
Oij ~ T ( ) for each (4,7, k),
K
Yijip ~ Pois (Z 02‘jk¢lbk> , for each (l,4,7,b).
k=1

This model trades model flexibility for computational efficiency. The tran-
sition matrix 7; is fixed for all samples and there is no tunable prior sub-
population concentration of each sample, but the computational efficiency
of the resulting inference algorithm is significantly better than the hierar-
chical Dirichlet process mixture model and this model can be fit to much
larger data sets. A complete graphical model representation of Model hGP
is shown in Figure 3.

The complete posterior distribution of the data under the Gamma-Poisson

model is
K N
p(8,6',0", po, Tly;a, T, €0) o p(po, 7eo) H (07 1po, 7) T ] (67 16%)-
k=1 i1
w0 ;
1 2ise105) T [ p(Paklar) T p(buorT0 i) p (i i Do)
j=1 =1 beB
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Fig 3: Graphical model representation of Model hGP.

3.5. Interpretation as a Hierarchical Dirichlet Process Mixture Model.
The hierarchical prior in Equation (9) can be interpreted in terms of a
hierarchical Dirichlet process, similar to that given in Section 2.2. To see
this, we appeal to (1) the relationship between the Gamma and Dirichlet
distributions, and (2) the limiting form of the finite-dimensional Dirichlet
distribution as the number of subpopulations goes to infinity.

A sample from a Dirichlet distribution can be obtained by normalizing
a vector of independent gamma random variables with equal rate param-
eters but possibly different shape parameters. Suppose 0, ~ I'(ag,1) for

k = 1,...,K are K independent Gamma random variables with shape
parameters a;. We adopt dot (-) notation 6. = Z,I::l 0x_to denote sums.
We denote proportion vector @ = (61,...,0k) where 6, = %’f. Lukacs

(1955) showed that 6. and 6 are then marginally (i.e., not conditional on
01,...,0k) independent; moreover, they are distributed as 6. ~ I'(a.,1),
where a. = St ag, and  ~ Dir (a., @), where @ = (&,...,85),

Because of the relationship between the gamma and Dirichlet random

variables, the propensity 6;;, can be represented as

Ok = 035.65jk,
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where

05 ~T (6.,1) and 6y ~Dir (6,,6])

Likewise, we can represent ¢/, as

0}, = 0,04, where 6. ~T(0/,1) and 6]~ Dir (0{’, é”) ;

and we can represent 6 as

0! = 0"0), where 6" ~T(py,7) and 6" ~ Dir (pos (F4---1 %)) -
At each level in the hierarchy, we independently sample the sum from a
gamma distribution and the proportions vector from a Dirichlet distribu-
tion The product of these yields a sample of the conditionally independent
propensity value at that level.

This representation induces a hierarchical of Dirichlet prior over the pro-
portions vectors at each level. Taking K — oo, that hierarchical Dirichlet

prior then describes the prior over the weights of the following hierarchical
Dirichlet process (HDP):

o0
gij = > _ 1y, 055, ~ DP(0]., g)),

k=1
m ~
g, = 140, ~DP(".g"),
k=1
m ~
g" =) 14,0y ~DP(po,g"),
k=1

where g” is the base measure. This HDP prior is the same as the HDP
prior in Section 2.2 except that the concentration parameters (e.g., ") are
gamma random variables, as opposed to fixed hyperparameters, and are
shared across all random variables at a given level.

4. Augment-and-Marginalize Gibbs Sampling for Gamma—Poisson
Model. In this section the complete conditional distributions are derived
for all latent variables in the Gamma-Poisson model—iteratively sampling
from these constitutes a Markov chain whose stationary distribution is the
exact posterior. The complete conditionals for all latent variables are avail-
able in closed form when further conditioned on a set of auxiliary variables.
These auxiliary variables have closed form conditional distributions while
leaving the stationary distribution of the Markov chain invariant; thus they
facilitate efficient Gibbs sampling inference.
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4.1. Latent subcounts. As with most Gamma-Poisson models, the first
set of auxiliary variables that facilitate inference are the latent sub-counts
Yijlbls - - - » Yijipi Which sum to the observed count y; 5, = Zszl Yijivk- The kth
subcount y; ik, represents the number of reads in sample s = (,7) at locus
I of base b that are allocated to latent subpopulation k. When conditioned
on their sum, the vector of sub-counts is Multinomial-distributed:

K
oNE g ~ oo _ Oiyrdek
(A1) (Wijiok) ey [Yigins Oijies Gore ~ Multi <yzjlba <2519m/¢w>k:1> )
The complete conditionals of the other latent variables depend on different
sums of these latent subcounts. Consider the total count of reads in sample
s = (i,7) allocated to subpopulation k:

L
(12) Yijok = Yijoh-

=1 beB

Due to the additive property of the Poisson distribution, this count is Poisson-
distributed in the generative model:

L
(13) Yijek|0, ¢ ~ Pois (Z > 9ijk¢blk> :

=1 beB

Since ) ;.3 ¢pix = 1 this simplifies to
(14) yij..k|0 ~ Pois (Leijk) .

4.2. Augment-and-marginalize. Although this model posits a non-conjugate
hierarchical Gamma prior, we can apply the “augment-and-conquer” proce-
dure of Zhou and Carin (2012) to recursively marginalize out Gamma ran-
dom variables and augment the model with auxiliary count variables to ob-
tain closed-form conditionals for all latent variables. At a high level, the idea
of augmentation is to represent a single complex distribution as a compound
distribution such that when the compound distribution is appropriately
marginalized the result is the original complex distribution. A simple exam-
ple is the Student’s T distribution, which can be represented as a Gaussian
distribution with an inverse Gamma prior on the variance parameter: when
the variance is marginalized out, the result is a Student’s T distribution.
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Marginalize 6;5,. The Poisson variable in Equation (14) represents the
count of all reads whose distribution directly depends on 6;;;. Marginal-
izing out 6;;; gives a negative binomial distribution over y;;...:

. L
(15) Yij-k|0i ~ NegBinom ( . 1+L> .
We note that previous work has shown that DNA sequencing count data is
well-represented by a negative binomial distribution (Rabadan et al., 2018).

Augment with w;j,. If we now augment the model with the following Chi-
nese Restaurant Table (CRT) random variable,

(16) U)ijk‘yij..k, ng ~ CRT (yij--lm Hik) ’
then the bivariate distribution p(y;j..k, wijk | 0}),) can be equivalently factor-
ized as
(17) ’U)ijk‘@;k ~ Pois ( ;k log(1 + L)) ,
L
(18) Yijo-k|wijr ~ SumLog (wijk, 1+L> 7

where SumLog (w,p) is the distribution of the sum of w i.i.d. Logarith-
mic random variables with probability parameter p. The Chinese restaurant
table (CRT) distribution is the distribution of the number of nonempty
tables in a Chinese restaurant process (Zhou and Carin, 2015). Suppose
we have a Chinese restaurant process with concentration parameter pg and
m customers. Then, the number of occupied tables is I = > ", b; where

b; ~ Bernoulli (i—1p3-p0> and the distribution of [ is I ~ CRT (1, po).

Inference in Augmented Model. A graphical model representation of the
augment-and-marginalize procedure is shown in Figure 4. Figure 4a shows
the original model structure with non-conjugate prior and Figure 4d shows
the equivalent model structure where conjugacy holds. During inference, we
sample the auxiliary variable w;;;, using Equation (16). We may then proceed
under the assumption that w;;; was in fact drawn from Equation (17) and
that all dependence of yl(Jk) on 0!, flows through w;;;. By marginalizing out
0;;x and augmenting with w;;;, we have replaced a non-conjugate link from
¢, to 6,5 with a conjugate link from ¢, to w;;r. In the next steps, we
recurse up the hierarchy.
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Gam Dir

Pois
CGRT
) s
B * SumLog

(a) Original (b) Marginalize (c) Augment (d) Factorize

Poisson N

Fig 4: Augment-and-marginalize steps. (a) The original model structure. (b) The mod-
elis transformed by marginalizing over 6;;,. (¢c) The model is augmented with the Chi-
nese restaurant table (CRT) random variable w;;i. (d) Finally, the joint distribution
p(Yij--k, Wik | 05;) can be factorized using into the product of a Poisson and SumLog
distribution.
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Marginalize 0)),. Having marginalized 6;j;, we now move up the model hi-
erarchy to Hgk. Define the w; = Z;V:ZI w; ), which is Poisson distributed,

wik |0}y, ~ Pois (6], N;log(1+ L)) .

This count isolates the dependence of downstream variables on 6/, , allowing
us to marginalize 0], out—doing so induces the following negative binomial
distribution over w;y:

. Nilog(1+ L)
. 0// ~ N B Y 2
wi|0) ~ NegBinom ( R 14 N;log(1+ L)

Augment with w},. We augment the model with a CRT variable,
wi|wik, 0 ~ CRT (wik, 0%) ,

and then re-represent the bivariate distribution of w;; and wgk as:

(19) w6} ~ Pois (67 log(1 + N;log(1 + L)))
N;log(1+ L)

20 2 |wl, ~ SumL ! d .

(20) Wi | wig, umLog <wlk, T+ N, log(1 1 L)

Marginalize 0. 'We now recurse up the hierarchy again. Defining the sum
w), 2 "N w/,, which is Poisson distributed:

wy, |0} ~ Pois (07 N log(1 + N;log(1+ L))) .

Marginalizing out #; induces a negative binomial distribution:

Nlog(l+ N;log(1+ L
w;\po,mNegBinom<po/K, og(1 + N; log(1 + L)) )

7+ Nlog(1 + N;log(1+ L))

Augment with wy!. We augment the model with another CRT variable,
w|gy, po ~ CRT (wy, po/K),

and then re-represent the bivariate distribution of wj, and w} as:

(21) w}l|po, T ~ Pois ((po/K)(log(1 + N log(1 + N;log(1 + L))/7)

Nlog(1+ N;log(1+ L))
22 / " ~ S L " .
(22) wilw Hnhos (wk’ 7+ Nlog(1l + N;log(l+ L))

Doing so admits a conjugate link between pg and wy.
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4.3. Algorithm. The augment-and-marginalize derivation in the previ-
ous section involves introducing auxiliary variables which replace the non-
conjugate links in the model with conjugate ones. This leads to an “upwards-
downwards” Gibbs sampler in which we first sample auxiliary CRT counts
up the hierarchy, then sample Gamma variables from conjugate conditionals
down the hierarchy. A complete algorithm for the the Gibbs sampler for the
Poisson-Gamma model is in Appendix C.

5. Simulation Experiments. In the previous sections we presented
a novel hierarchical Dirichlet process mixture model for combining single-
cell and bulk sequencing data and using the correlation between related
samples induced by the sampling strategy or experimental design. The hi-
erarchical Dirichlet process mixture model (Model hDP) allows for direct
control over the a priori concentration of the sample, but the inference
algorithm requires expensive Metropolis-Hastings steps. The hierarchical
Gamma-Poisson model (Model hGP) can be interpreted as representation of
the hierarchical Dirichlet process mixture model closely related to Model hDP
with a much faster inference algorithm only requiring Gibbs sampling from
analytical distributions. In this section, measure the accuracy, computa-
tional efficiency, and stability of these models compared to state-of-the-art
machine learning and bioinformatics methods.

Data Generation. Simulation data was generated from a parametric hier-
archical Dirichlet mixture model with K = 3 true subpopulations and L =5
genomic locations. The number of individuals is NV = 6 and each individual
has 1 bulk sample and 3 single-cell samples for a total of N; = 4 biopsies
for each individual. The number of reads per sample (across 5 genomic lo-
cations) is R;; = 100; each genomic location has an average of 20 reads.
Simulation data was generated according to the following model:

g" ~Dir(a), gj~Dir(B;i-g"), gij ~Dir(vj-gj),
zijr ~ Categorical (g;5), ;i ~ Categorical (Tl(ij) . hlZijr) ,

where a = (1,1,1), 8; =1, and ~;; = 10 for the bulk samples and ~;; = 0.1
for the single-cell samples. The genotype-nucleotide transition matrix is

AA Aa aa

I ¢ 3 )
= (i5) 1 (@3) |>»
2

a €A ~ a

where el(slﬂk) = el(zulk) —0.01 and &9 = el(ilc) = 0.15 for bulk and single-cell

la

samples respectively—(bulk) = {s = (4,5) | j is a bulk sample} and (sc) £
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{s = (4,J) | j is a single-cell sample}. As a benchmark, the subpopulation-
genotype matrix is set to

2 2 0 0
RT=10 0 2 0
000 2

N OO

and in other simulation experiments h is randomly sampled from a prior
distribution.

Posterior Inference. The marginal posterior distributions g”|x, ¢’|x, g|x
and h were estimated using MCMC samples generated from Algorithm 1.
We sampled 490 posterior samples after a burn-in/warm-up of 1,000 sam-
ples and thinning by a factor of 100. The number of subpopulations in
the truncated Dirichlet process mixture inference algorithm (Algorithm 1)
is set to K = 30 which is a factor of 10 greater than the true number
of subpopulations. Figure 10 shows the true values and posterior distri-
bution estimates from the simulation model, where the top three compo-
nents of the model finds are exactly the same as the three components of
h and the fourth component of the model finds has nearly zero probability.
At population level, the KL divergence between the true distribution and
inferred posterior distribution is KL(g"||g”) = 0.570. At individual level,
the average KL divergence is %Zﬁl KL(g}||gi") = 0.692 and the stan-
dard deviation is 0.289. At the biopsy level, the average KL divergence is
% Zfil N% Zﬁl KL(gi;llgi;) = 0.521 and the standard deviation is 0.371.
A detailed visualization and discussion of the posterior distribution are in
Appendix D.1. These results indicate that the model is able to identify the
true subpopulation genotypes and the posterior distributions are appropri-
ately uncertain relative to the amount of data and the proximity to the data
in the model.

Comparison to LDA and NNMF. To assess the importance of the hier-
archical structure in Model hDP, we compared the performance to latent
Dirichlet allocation (LDA) and non-negative matrix factorization (NNMF).
However, both LDA and NNMF failed to find the true components for our
benchmark simulation data. Thus we generated other data sets using the
same parametric model but only having bulk data and compared the per-
formance with our model. The KL divergence, KL (g;;| gi;), mean and 95%
confidence interval across inference repeats is shown in Figure 11 in Ap-
pendix D.2 (Table 2 in Appendix D.2 shows the numerical values). These
experiments shows that Model hDP outperforms LDA and NNMF for bulk-
only and mixed data scenarios.
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Fig 5: Marginal posterior density estimates for simulation data with N = 6 and N; = 4.
The population-level subpopulation marginal distribution g” slightly underestimates the
fraction of subpopulation £ = 1 and is accurate for the other subpopulations. The accuracy
of the individual-level distribution gi and the sample-level distribution gi,;1 are more
accurate in part because because they are closer to the data in the model hierarchy.

Comparison to PhyloWGS and TreeClone. We compared the performance
of Model hDP to two other models for inferring clonal subpopulations in
mixed samples: PhyloWGS and TreeClone. Due to sample size limitations
in PhyloWGS, we reduced the sample size to N € {1,2}), N; € {1,2,3}
and only generated bulk data and kept other settings same (R;;=100, L=5)
to generate 6 simulation datasets to compare PhyloWGS, TreeClone and
Model hDP. PhyloWGS successfully identifies true subpopulations at sample
level but inferred an incorrect hierarchical structure relating the samples. A
complete presentation of the results of this experiment are in Appendix D.3.
Figure 12 therein shows phyloWGS’s posterior distributions at sample level
are less accurate than Model hDP in terms of KL divergence. TreeClone suc-
cessfully identifies number of subpopulations but the posterior distributions
at sample level are less accurate than our model.

Sensitivity Analysis. To assess the sensitivity of the model, we performed
simulation experiments varying h, K, L, and the single-cell sequencing er-
ror rate el(if) and el(g). To assess the sensitivity to different values of h,
five simulation data sets were randomly generated with hy, ~ Multi(1, a)
where a = (0.45,0.1,0.45). In all cases, the model was able to identify the
true subpopulation genotypes when the subpopulation was represented by
samples in the data as shown in Appendix E.1. To assess the sensitivity to
varying K, K was increased from 3 to 10 with L = 10 and R;; = 1000
with randomly sampled h. Appendix E.2 shows the results of the simula-
tion experiment of vary K: our model successfully inferred true components
with relatively small KL divergence. To assess the sensitivity to varying L,
we ran simulation experiments with L = {3, 10,20, 50, 100}. Appendix E.3
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shows our model identified the subpopulations and posterior distribution of
the subpopulations across this range of L. Finally, we assessed the sensi-
tivity of the model to varying single-cell sequencing error rate eﬁf) for the
single-cell samples because while the error rate for bulk experiments is well-
established, the error rate for single-cell experiments is more uncertain. We
set 61(2) = {0.1,0.15,0.2,0.25,0.3} and sampled h randomly. The results
(Appendix E.4) show our model was not sensitive to the specified single-
cell sequencing error rate, but performance does degrade as the error rate
increases.

Accuracy and Computational Efficiency of Model hGP. Since Model hGP
is designed for a large number of single-cell samples, we simulated V; = 99
single-cell samples from the benchmark model with a sequencing error rate of
el(g) = el(g) = 0.15. The model took less than 10 minutes to run and identified
all three subpopulation genotypes exactly, ||h — il”l = 0. The accuracy
of marginal subpopulation distributions were, on average: KL (g;j]/gij) =
0.119, KL (g{[|g;) = 0.0173, and KL (g"”[|g") = 0.060. These metrics indicate
that Model hGP is highly accurate and computationally efficient for the
intended use regime—a dataset with a large number of single-cell samples.

6. Acute Lymphoblastic Leukemia Experiments. We fit Model hDP
and Model hGP to a mixed single-cell and bulk DNA sequencing data set of
N = 6 childhod acute lymphoblastic leukemia (ALL) patients (Gawad, Koh
and Quake, 2014). The study collected targeted sequencing of a panel of SNV
loci from 1,479 single-cells and bulk samples to better understand genomic
heterogeneity. The authors of that study concluded that KRAS mutations
occur late in development, but do not lead to clonal takeover. DNA sequenc-
ing data from bulk samples and single-cell samples was obtained from the
NCBI short read archive under study accession SRP044380.

6.1. Preprocessing. Sequenced reads from both bulk and single cells were
converted to FASTQ format and mapped to the human genome assembly
(hg38) using the Burrows-Wheeler Alignment tool (BWA version 0.7.17)
with default parameters to create BAM files (Li and Durbin, 2010). The
reads with mapping quality below 40 were removed and PCR duplicate
marking was performed with Picard (version 2.0.1). The results of the pre-
processing can be tabulated as shown in Table 1 for Patient 6 for one bulk
sample and three single-cell samples. It is evident that there is good cover-
age across all of the loci for the bulk sample, but the single-cell coverage is
both sparse and shallow. Other patient samples (shown in Appendix F.4)
have single-cell coverage at different loci. The models we have developed
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address this single-cell sparsity issue by borrowing strength across patients,
bulk samples, and single-cell samples to provide a more accurate picture of
the genetic state of the samples, patient, and population.

Patient 6
BULK S10 S100 S101
PPIG (chr2:169637471) 85 (85/0) — — —
FAT1 (chr4:186618077) 39 (39/0) — — —
HDAC9 (chr7:18644770) 92 (92/0) — — —
PLEC (chr8:143920874) 71 (71/0) — — —
PLEC (chr8:143924816) 103 (53/50) 7 (7/0) 9(6/3) 13 (0/13)

FAM178A (chr10:100924346) 96 (95/1) — — —
FAMI78A (chr10:100924409) 50 (50/0) — — —

KRAS (chr12:25227337) 146 (146/0) — — —

KRAS (chr12:25245328) 146 (146/0) — — —

ZNF880 (chr19:52384775) 45 (45/0) — — —
TABLE 1

Read-count table for Patient 6. The total read counts across ten loci for one bulk sample
and three single-cell samples (510, S100, S101) are shown. The major/minor allele ratios
are shown in parenthesis after each read count. Zero read counts are shown as dashes
indicating missing data at those loci.

6.2. Posterior Inference using Model hDP. Model hDP is most appro-
priate for for targeted sequencing experiments (small L and small Zf\i 1 Vi)
and a mixture of bulk and single-cell experiments because it allows one to
add impactful a priori information about the data in the hyperparameters of
the model when the sample size is small. We sampled three single cells and
one bulk sample for each patient. Of the mutations validated in the original
report, we selected L = 10 non-synonymous loci curated from ALL litera-
ture for which there was read support in both the bulk sample and at least
one single cell. This setup replicates a scenario where one has a biomarker
panel for targeted therapeutic decision-making while employing the pub-
lished data set. A full listing of the loci and samples selected for analysis is
given in Appendix F.1 and Appendix F.2. We set K (the number of sub-
populations in the model) to 30 which we expect is much greater than the
number of true subpopulations based on literature on genomic subtypes. We
set the parameters o to 1, 8; to 1, and 7;; to 0.1 for all ¢ and j. Single-cell
samples are amplified by whole-genome amplification the nucleotide error
rates are expected to be much higher than for bulk samples (Zafar et al.,
2016), so the different error rate models are employed for bulk and single-cell
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¢ ~a \0.01 05 0.99)’ L7 a \015 05 0.85)’

where (bulk) = {s = (i,7) | j is a bulk sample} and

(sc) = {s = (4,7) | j is a single-cell sample}. We drew a total of 50,000
samples with a burn-in of 1,000 samples and thinned by a factor of 100
giving 490 posterior samples. Convergence of the sampler was validated by
standard Geweke tests (see Appendix F.3). With these parameters, inference
took 7 hours on a single processor core. In further testing, we found that
in fact 50,000 posterior samples are not required and 10,000 samples would
achieve similar results, thus the time can be reduced by a factor of five. Since
h is discrete, at the end of the sampling process we align samples of h scan
across all of the samples to register unique hj with associated components of
g, d” , and gf” . For example, suppose subpopulation 3 in MCMC sample 100
is hémo) = (1,2,1), and in MCMC sample 143 subpopulation 6 is hé143) =

(1,2,1). Clearly, the subpopulations in both samples are the same, so we

associate géwo) with gé143).

Posterior Distribution. The posterior distribution as estimated from the
samples is concentrated on only a few subpopulations indicating that the
truncated Dirichlet process used for the inference algorithm is an accurate
approximation. Figure 6 shows the average of the all 490 samples of posterior
distribution over populations, subpopulations and bulk and three single-cell
samples of Patient 6. We selected subpopulations with an average poste-
rior greater than 0.05 in any sample from Patient 6, H = {hy | 3Gijx >
0.05, for i = 6 and j = 1,2,3,4}. The y-axis is the MCMC estimate of
gijk|H, @, gi|H,z, and gi|H,x. Similar plots for all six patients can be
found in Appendix F.4.

The posterior distribution is smoother at the population level than at the
sample level reflecting the smoothing effect of the hierarchical model struc-
ture. At sample level, most of the posterior distributions are concentrated at
one component. As can be seen in the figures in Appendix F.4 bulk samples
tend to be more mixed than single-cell samples reflecting the biological re-
ality that single-cell samples contain only one genotype, while bulk samples
are a mass of cells each with their own genotype.

A useful feature of the hierarchical model is its ability to share information
across samples through the individual and its ability to share information
across individuals through the population. This feature is particularly pow-
erful for single-cell data where the read coverage may be zero for some loci
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Fig 6: Posterior distribution plots for Patient 6 from Model hDP. Red bars show the
population level distribution over subpopulations (g”|H, x), blue bars show the individual
level distribution (§'|H, ), and green bars show the sample level distributions (g|H, ),
where H = {hy | 3giji > 0.05, for i =6 and j =1,2,3,4}.
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because the model can rely on the individual-level distribution which is in-
formed by both the population distribution and the bulk sample. Table 1
shows a read-count table for Patient 6. While all of the loci have data from
the bulk sample, only one locus, PLEC' (chr8:143924816), has any single-cell
data. This table is representative of single-cell and bulk data in that bulk
samples tends to have good coverage across all loci, while single-cell sam-
ples tends to have much more missing data (see Appendix F.4). Recalling
the posterior distribution in Figure 6, the bulk, S10, and S100 samples all
have significant posterior mass on the wild-type (all-zero) component, but
S101 has very little mass on that component which is consistent with the
read-count data in Table 1. The posterior distribution places some mass on
components with a homozygous mutation in PLEC (chr8:143920874) and
KRAS (chr12:25227337) for single-cell samples S10 and S100. Of course,
single-cell samples are expected to have the posterior mass concentrated on
only one genotype. Table 1 shows that there is missing data for these loci
and because the data is missing the model is employing information from
the individual-level distribution which places roughly similar mass on those
components. This model behavior is consistent with our expectation that a
lack of data is not evidence of no mutation, but instead should be informed
by the information from the bulk through the individual-level distribution.

Biological Interpretation. As shown in Figure 6, for Patient 6, the posterior
distributions of the bulk data and single cell S101 have more than 50% prob-
ability on the subpopulation which has a single mutation at PLEC (chrS8:
143924816) at the sample level. The posterior distribution for single cell S101
has more than 75% on that component. This result correlates with the de-
scription of the data in the original report (Gawad, Koh and Quake, 2016).
Model hDP also finds meaningful mutations for Patient 1-5 after comparing
our result with the original report. As shown in Appendix F.4, Patient 2
has a posterior distribution that concentrates on the component that has a
mutation on PLEC at sample level which is exactly the same as described
in the original report. For Patient 5, the posterior distribution at sample
level for S10 has nearly 50% probability concentrated on two components
both with a mutation on FAM178A. This indicates a possible mutation on
FAM178A for Patient 5 which is congruent with the original paper. The
posterior distribution for S100 has a large probability concentrated on the
component with a mutation on HDACY. It is expected since all two reads
on HDACY9 harbor a minor allele. For Patient 4, the posterior distribution
at sample level is concentrated on the component that has a mutation in
FAT1 which is shown to be a gene that has mutated in pediatric ALL pa-
tients (Neumann et al., 2014). Our model also finds an interesting mutation
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in PPIG in Patient 1; it is not yet known if the mutation acts to drive ALL
development, but the mutation is clearly present in a single cell.

6.3. Posterior Inference using Model hGP. The hierarchical Gamma-
Poisson model (Model hGP), has a fast inference algorithm and therefore,
can be used to analyze the ALL data set. We selected all the single-cell
data for this analysis giving Zfi 1 N; = 1,460 samples and L = 111 non-
synonymous loci from 6 patients. SERPINF2, RNF180 are found mutated
across all patients remove form the analysis giving L = 109 loci. Inference
on this data set with Model hGP took 80 minutes on a 4-core MacBook Pro
with 16GB RAM and 2.3GHz processor using a Cython implementation.

Posterior Distribution. Figure 7 shows the posterior probability—under
population-level, individual-level, and sample-level distributions—of the five
subpopulations that had the highest posterior probability under Patient
1’s sample-level distributions and three single cells. It is evident there is
heterogeneity in the clonal content of the tumor. Single-cell 1 has a large
posterior weight on subpopulation 1, single-cell 2 has a large weight on
subpopulation 2 and single-cell 3 has a large weight on subpopulation 4.
Each subpopulation is associated with a genotype given by h. Figure 25 in
Appendix F shows the h matrix for the subpopulations in Figure 7.

Biological Interpretation. One way Model hGP can be used to draw in-
ferences that are not obvious from direct inspection of the data is to infer
the co-occurence of mutations across samples. If two genes are frequently
mutated together it may indicate a synergistic relationship between two
oncogenic processes mediated by the genes. An L x L adjacency matrix, A,
can be constructed from the model as where an element is

K
ayp = Zégl(hlk > 0)1(hyr > 0).
k=1

The adjacency matrix values are bounded between zero and one and a large
value indicates that the two loci are co-mutated and have a high posterior
probability across samples.

Figure 8 shows the adjacency matrix in network form where an edge
between [ and !’ is drawn if a;r > 0.50. Loci without edges to other loci
are omitted. There are 67 mutations that meet the criteria for inclusion.
The most connected locus has 18 connected loci and the average number of
connections is 5.

The most connected component is MLN (chr6:33799111) and all of the
reads associated with mutations in MLN occur in single-cell samples from
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Fig T7: Posterior distribution plots for Patient 1 for Model hGP. Red bars show the
population level distribution over subpopulations (§”|H, x), blue bars show the individual
level distribution (g'|H, ), and green bars show the sample level distributions (g|H, ).
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Fig 8: Inferred mutation co-occurence network across all patients from Model hGP.

Patient 5. One of the highly connected genes, TTN, has recently been re-
ported as the most frequently mutated gene in a pan-cancer cohort and is
associated with increased tumor mutation burden (Oh et al., 2020). Inter-
estingly, TTN is connected to RYRS and this connection was identified in
the original report (Gawad, Koh and Quake, 2016) in the inferred directed
minimum spanning tree of subpopulation evolution for Patient 1. TTN was
identified as the founder mutation in Patient 3 and a downstream muta-
tion DST is also shown to be connected in our inferred network. Though it
should be noted that TTN is a very large 304kb gene. PLK2 is connected
to seven other loci including DOCKS5. This co-occurence was also observed
in the original report for Patient 4 (Gawad, Koh and Quake, 2016).

The co-occurence adjacency matrix, A, can be constructed with only data
from an individual (patient). Figure 9 shows the adjacency matrix for Patient
1. In this network MLN (chr6:33799111), TTN (chr2:178531094), VIWWDE
(chr7:12383545) and PLK2 (chr5:58458999) are the most connected muta-
tions. While these co-occurence inferences are suggestive, and not conclusive
they are powerful for proposing avenues of validation through observational
human data or experimental model systems.

7. Discussion. We have presented a novel statistical model and com-
panion inference algorithms for inference in structured single-cell and bulk
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Fig 9: Inferred mutation co-occurence network across Patient 1 from Model hGP.

DNA sequencing data. We have also suggested an alternative representa-
tion of the model as a Gamma-Poisson hierarchical model. The reason for
the development of two inference algorithms is that they each make differ-
ent tradeoffs between computational efficiency and statistical representation.
The Dirichlet process model has parameters ~;; and Tl(” ) that can be in-
dividually specified for each sample s = (7,j). A single-cell sample would
have a small value of 7;; indicating there is, a-priori, a small number of
subpopulations and the genotype-nucleobase transition matrix, Tl(” ), may
be set according to an error model of DNA sequencing data after whole
genome amplification. A bulk sample, conversely, may have a larger value
of 7;; and a value of Tl(” ) with a lower sequencing error rate. This rep-
resentational flexibility in the model comes with computational costs and
the MCMC inference procedure can be slow for a MCMC sampling algo-
rithm are more relevant for targeted sequencing experiments on small study
populations—for example correlative sequencing data in a phase I clinical
trial. The Gamma-Poisson model does not provide direct control over the
concentration of subpopulations for individual samples and the parameter
Tl(” ) is the same for all samples. This limitation may not be critical when
sufficient data exists to achieve accurate inferential results from the entire
data set or when the experimental protocol is the same for all samples. In-
ference Gamma-Poisson model uses analytical updates in a Gibbs sampler
and is very fast making it feasible to analyze larger data sets. The Gamma-
Poisson model and augment-and-marginalize Gibbs sampling algorithm are
more relevant for sequencing experiments on large study populations with
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single-cell samples.

The inference algorithm for the Dirichlet process mixture model is highly
accurate compared to standard decomposition models and existing bioinfor-
matics tools for structured, targeted sequencing data sets. An analysis of a
real sequencing data set reveals the inferred genotypic content of the sample
and the a-posteriori distribution over clonal subpopulations with associated
uncertainty based on incomplete single-cell sequencing.

An analysis of a large-scale sequencing experiment using this model re-
vealed co-occurence networks for each individual patient. Some co-occurence
connections were hinted at in the original report of the data set, confirming
the ability of the model to identify connections in the co-occurence network.
The Gamma-Poisson model provides a more comprehensive and unbiased
analysis of that data set by combining evidence from all of the data under
a Bayesian nonparametric hierarchical model.

Copy number aberration is a prevalent in cancer samples and an impor-
tant aspect of cancer etiology and statistical inference in genomic data. We
have assumed in this work that the samples are diploid with no copy number
aberration. There are technologies to independently measure copy number
aberration (Alkan, Coe and Eichler, 2011) and methods for estimating copy
number aberration from sequencing data (Budczies et al., 2016). Some meth-
ods have demonstrated ability to jointly estimate single-nucleotide variants
and copy number aberrations (Riester et al., 2016) and such joint estimation
would be interesting future work for the models developed here.
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APPENDIX A: RELATED WORK

Paired Tumor-Normal Models. 'There has been substantial work on analyz-
ing tumor heterogeneity using paired tumor-normal samples. PurityEst (Su
et al., 2012) and PurBayes (Larson and Fridley, 2013) focus on estimating
the purity of a sample, but fundamentally assume the mixture in a sample is
exclusively between a tumor genotype and a normal (non-tumor) genotype.

Pyclone. Roth et al. (2014) proposed a Dirichlet process mixture model for
subpopulations called Pyclone. Pyclone is inspired by phylogenetic consider-
ations, but the actual subconal populations are not constrained to agree with
a tree. The method has enjoyed considerable success in applications (Andor
et al., 2016; McGranahan et al., 2016).

PhyloWGS. PhyloWGS uses a Bayesian nonparametric model to recon-
struct genotypes of the subpopulations from sequencing data (Deshwar et al.,
2015). This was one of the first models to attempt to reconstruct both the
point mutation landscape as well as the copy-number variation landscape for
complex tumors. The paper shows that copy-number variation data is essen-
tial for accurate subclonal reconstruction. However, that work did not look
at the effect of incorporating the experimental design structure or single-cell
sequencing.

Bayclone. Bayclone uses an Indian buffet process prior over the genotypes
for the subpopulations (Sengupta et al., 2015). While Bayclone focuses on
the subpopulation genotypes, it also incorporates a Dirichlet distribution for
the subpopulation fractions in each sample. However, it assumes each sample
has the same probability for each non-normal subpopulation a-priori, and it
assumes each sample is conditionally independent given this prior. Bayclone
is related to the phylogenetic Indian buffet process—a feature allocation
model (Miller, Griffiths and Jordan, 2008).

Sciclone. Sciclone uses a hierarchical Bayesian mixture model to infer sub-
clonal populations (Miller et al., 2014). The method achieves computational
efficiency by using a variational approximation to estimate the model pa-
rameters. It uses a pruning method to select the number of subpopulations
and provides an estimate of uncertainty in the inferential products.

CloneHD. CloneHD integrates information from copy number data, B-
allele frequency, and somatic nucleotide variants to infer clonal subpou-
lations (Fischer et al., 2014). The method uses the Bayesian information
criterion to select the number of subclonal populations. It uses a coupled
hidden Markov model to integrate data across omic modalities.
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Clomial. Clomial proposes a hierarchical model that has Bayesian conju-
gacy and therefore closed form EM updates (Zare et al., 2014). Their exper-
iments show that even without information about the proximity of sampling
within a tumor, nearby samples display similar clonal composition as would
be biologically expected.

Cloe. Cloe takes the innovative approach of incorporating a prior over phy-
logenetic trees (Marass et al., 2016). While the prior regularizes the resulting
products of inference towards valid phylogenetic tree structures. The model
requires a somewhat costly Metropolis-coupled Markov-chain Monte Carlo
sampler, but for targeted sequencing, the expense is not prohibitive.

TreeClone. Treeclone is a nonparametric Bayesian model for reconstructing
the clonal subpopulation phylogeny and inferring tumor heterogeneity (Zhou
et al., 2019a). It employs a tree-based latent feature allocation model on
pairs of mutations (Zhou et al., 2019b) that are phased by their presence on
the same short-read. By constraining the columns of the mutation-pair-by-
subclone matrix to a tree structure MCMC sampling is much more compu-
tationally efficient. The method produces impressive results for a moderate
number of samples and scales well with the number of mutation pairs.
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APPENDIX B: HIERARCHICAL DIRICHLET PROCESS MIXTURE
MODEL MCMC SAMPLER DERIVATION

Derivations for each sampling step in the MCMC sampler for the Model hDP
are provided in this section. The index of the MCMC sample is denote by a
superscripted ().

Sample hl(,? from p(hyk|h 1, @, z,a;, T). The matrix h can be sampled by
updating its elements independently conditional on the Markov blanket. The
posterior distribution of h;y is
N N; Ryj
(23)  p(huglh—, z, z =k, a;, T) o p(huelar) [ [T T p(aijirl e, T).
i=1j=1r=1
The conditional term z = k denotes the set of reads assigned to subpop-
ulation k, {(7,7,7)|2ij» = k} since hy; only depends on the reads assigned
to subpopulation k. The normalization constant can be computed using the
constraint deg p(hi = glz = k,a;, x;, T;) = 1. A sample hy, is drawn from
a multinomial (categorical) distribution.

Sample zl(;q)n from p(zijr|Z—ijr,x, h,g). The matrix z can be sampled by
sampling each z;;, due to the conditional independence structure of the
model. The posterior distribution of z;;, is

(24) P(zijr| 2—ijr, T, Ry @) < P(Tijir| zijr = Ky hig, T)p(2ijr = K|gij)-
The terms p(z;jir| 2ijr = k, hig, T)p(2ijr = k|gij) can be computed exactly for

eachk =1,..., K. These quantities are normalized to give p(2jr|z_ijr, x, b, g).
A sample z;;, is drawn a categorical distribution with associated probabili-
ties.

Sample gg) from p(gijlg—ij, z,9",7ij). The sample-level distributions over
subpopulations, g, can be sampled by updating each g;; because the g;;’s
are conditionally independent given g}. The posterior distribution of g;; is
Rij
(25) P(9i|9-i5, 29", vig) < p(gislgh vig) [ [ p(zigr19is)-
r=1
The likelihood is a categorical distribution with K possible components and
the prior is a K dimensional Dirichlet distribution; by Bayesian conjugacy,
the posterior distribution is the K dimensional Dirichlet distribution:
(26)
9ii|gi Yigs zits - Zigryy ~ Dir [ | D Lzge = 1], 1zge = K] | + 735 - g

r=1 r=1
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Sample g Et) from p(gilg,g”,B;). The set of distributions of subpopulations
for all individuals g’ can be sampled by sampling each g, independently
conditioned on g/. The posterior distribution of g/ is

N;

(27) plgilg. 9", Bi) < p(gilgi, Bi) | | p(gislgh)-
j=1

We use a simple Metropolis-Hasting sampler to draw from the posterior
distribution because the prior and likelihood are not Bayesian conjugates.

Sample ") from p(g”|g’, 9", ap). The posterior distribution of subpopu-

lations in the population (entire dataset), g”, is

N

(28) p(g"lg’, 9", ) x p(g"lg" a0) [ [ p(gilg”. Bi).
=1

The prior is p(g”|g"”, ap) ~ Dir (ao - ") and the likelihood is p(g}|g”, 5i) ~

Dir (3; - g”). So, we use a Metroplis-Hasting sampler to draw a new sample
"

g .
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APPENDIX C: GAMMA-POISSON MODEL AND INFERENCE

A complete derivation of the Gibbs sampling steps and associated notation

for the Gamma-Poisson model is shown in the main text. Here we summarize
that algorithm in Algorithm 2.

Algorithm 2: Auxiliary variable Gibbs sampler for Gamma-Poisson
Model

1

2

foreach (i,5,l,b) do

(k) K s 0ikPolk K
Sample (yijlb)k71 [yijtbs Oigter Poure ~ Multi | yijin, | =5 "0—

k=196 Son )

3 end

[N

5

© o N O

10
11
12
13

14
15
16
17
18
19
20
21
22

foreach (i,5,k) do
‘ Sample wijk\ygf)7 0}, ~ CRT (yij’?), 9:k>
end
foreach (i,k) do
‘ Sample w;,|wik, 0 ~ CRT (wik, 0% )
end
foreach (k) do
| Sample wy/|wy,, po ~ CRT (w}, po/K)
end
Sample
polw?,...,wgx ~T (eo + Zszl wy,, €0 + log(1 + Nlog(1 + N; log(1 + L)))/T)
foreach (k) do
‘ Sample 0}, |w}y, po, T ~ T (po/ K + w}, 1 + Nlog(1l + N;log(1 + L)))
end
foreach (i,k) do
‘ Sample 0}, |wik, 0 ~ T (0} + wik, 1 + N;log(1l + L))
end
foreach (i,5,k) do
| Sample 0k |yiji, 051 ~ T (054 + yijr, 1 + L)
end
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APPENDIX D: SIMULATION EXPERIMENTS

D.1. Posterior Inference. As described in the main article, the model
identifies the true number of subpopulations by placing most of the posterior
mass only on three subpopulations. The fourth most frequent subpopulation
(k = 4) is shown as evidence that the subpopulation is not employed by the
model. At the sample level (g;;) the posterior inference is highly accurate
for both pure and mixed samples. At the individual level (g}), the posterior
distribution displays more uncertainty (less peaked), though the posterior
mode is still accurate. At the population level (g”), the posterior distribu-
tion is more uncertain because it is furthest from the data in the hierarchy
and closest to the prior but still reasonably accurate considering the small
number of individuals (/N = 6) providing evidence for this estimate.

D.2. Comparison with LDA and NNMF . There are many meth-
ods for factorizing count data. The general goal of these models is to learn
and low-dimensional representation of the high dimensional non-negative
count data. Two popular methods are LDA (Blei, Ng and Jordan, 2003;
Pritchard, Stephens and Donnelly, 2000) and NNMF (Lee and Seung, 1999).

Latent Dirichlet Allocation. Model hDP is related to LDA, but different in
several critical aspects: (1) LDA is a Bayesian parametric model, whereas
our model is a Bayesian nonparametric model, (2) LDA has one level of
Dirichlet hierarchy, whereas our model has three, (3) standard LDA does
not assume sample-specific subpopulation prior concentration, whereas our
model integrates prior information about sample concentration. The last
difference could be accommodated in the LDA model by assuming different
Dirichlet parameter values, but we have not seen it done previously in prac-
tice. In our simulation experiments, we explore the performance of standard
LDA and LDA incorporating varying prior parameters.

Non-negative matrix factorization. Non-negative matrix factorization is a
natural method for factorizing read-count data because the read count ma-
trix has all nonnegative entries. However, NNMF is very different than
Model hDP. NNMF does not aim to estimate a distribution over subpop-
ulations, does not allow for structured datasets, and does not allow one to
specify the a priori subpopulation concentration for each sample. Neverthe-
less, because of the existence of fast inference algorithms, NNMF has been
used for read-count datasets.

Results. To assess the importance of the hierarchical structure in Model hDP,
we compared the performance to LDA and NNMF in terms of the KL di-
vergence — lower values indicate the estimated distributions are closer to
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91,1

Fig 10: Marginal posterior density estimates for simulation data with N =6 and N; = 4
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true distributions. Since both LDA and NNMF failed to find the true com-
ponents in the simulation of mixture of bulk sample and single cell sample,
we generated data sets using the same parametric model but only having
bulk data and compared the performance with our model. Figure 11 shows
a visualization of the comparisons between LDA, NNMF, and Model hDP.
In Table 2, the values in the parentheses are the 95% confident interval of
the KL divergence. Bold values are the best one in the same scenario. This
experiment shows that Model hDP outperforms LDA and NNMF in all but
one data scenario.

N.N;

T o ' B o,
(3,3) o wp
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LDA .

(3,10) NNMF vt

hDP ——

LDA .

(10,3) NNMF ;
LDP
LDA o
(10,10) NNMF n
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0 2 4 6

_IOgKL(gij ‘ |gij)

Fig 11: Comparisons among NNMF, LDA, and Model hDP. The KL divergence between
the estimated sample-level posterior distribution over subpopulations and true distribution
over subpopulations, KL (gi;||gij), shows the model accuracy (higher —log KL is better).

N N; LDA NNMF hDp Model

3 3 - 0.035 (0.035, 0.036)  0.009 (0.004, 0.013)
10 0.208 (0.208, 0.208)  0.035 (0.033,0.037)  0.011 (0.009, 0.013)

10 3 0.235(0.235,0.235)  0.002 (0.001, 0.002)  0.016 (0.000, 0.036)
10 0.276 (0.276, 0.276)  0.012 (0.012,0.012)  0.008 (0.004, 0.012)

20 3 0.198 (0.198,0.198)  0.019 (0.018, 0.020)  0.007 (0.006, 0.008)

TABLE 2
Comparison between LDA, NNMF, and Model hDP by KL divergence between estimated
sample-level posterior distribution over components and true distribution over
components, KL (gi;]|gi;)-

D.3. Comparison with Pyclone, PhyloWGS and TreeClone.
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Pyclone. When we analyzed the simulation data with Pyclone we found
that it predicts all samples come from the same cluster with 0.558 preva-
lence (55.8% of the samples has the mutation) and 0.16 standard deviation.
Pyclone does not have the capability to identify subpopulation frequencies
above the sample level so we were not able to compare distributions at the in-
dividual and population level. Deshwar et al. (2015) noted that copy-number
variation can be a powerful data modality for discriminating subpopulations
with similar frequencies.

PhyloWGS.  We attempted to analyze simulation data that was generated
in the same way as describe in the Data Generation paragraph. We set

the number of individuals, N = 5, the number of samples per individ-
ual, V; = 3, and number of reads per sample (across 5 genomic locations)
to R;; = 100 — each genomic location has an average of 20 reads. We

found that PhyloWGS was not able to produce enough posterior samples
for inference. The method returned an error indicating that all samples are
multiprimary—the posterior samples are polyclonal (too many components,
thus not converged)—(https://github.com/morrislab/phylowgs/blob/
master/pwgsresults/result_munger.py). So, we reduced the number of
samples as indicated in the main text.

(N7 Ni
TreeClone

( 1.1 ) PhyloWGS
’ hDP
TreeClone
( 1 .2) PhyloWGS
) hDP
TreeClone
( 1 ‘3) PhyloWGS
’ hDP
TreeClone
(2 1 ) PhyloWGS
) hDP
Method

TreeClone LDP
(272) BIYIGHGES PhyloWGS
hDP
TreeClone
(2.3) PhyloWGS
hDP

0 5

TreeClone

1‘0A 15
_logKL(gij | |gij)

Fig 12: Comparison between Model hDP, PhyloWGS and TreeClone by KL divergence be-
tween estimated six sample-level posterior distribution and true distribution, KL (g;;(|g:;),
shows the model accuracy (higher —log KL is better).
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APPENDIX E: SENSITIVITY TO VARYING h, K, L, AND ¢

To assess the sensitivity of the model, we performed simulation experi-
ments varying h, K, L, /4, and €j,. Data was generated as in Section 5. The
number of individuals is N = 6, and the number of samples per individuals
is N; = 4, where each individual has 1 bulk sample and 3 single-cell samples.

The metric used to assess the goodness-of-fit of the marginal posterior
distribution of the subtypes is the standard KL divergence between the true
posterior and the estimated posterior. The metric to assess the goodness-of-
fit of the subpopulation genotype estimate is a modified Hamming distance:

11 L K
|h—hl; = %L 2 ; |hagr — hag

where k' is subpopulation that is the closest match to the true genotype in
the estimated genotype matrix, h.

E.1. Sensitivity to varying h. We assessed the sensitivity of the
model to variations in the genotype-subpopulation matrix h. We used the
same settings as the benchmark experiments: K =3, L =5, a=1, ;=1
for all i, el(zmk) = el(smk) = 0.01 for bulk data and el(;s:) = el(zc) = 0.15 for
single cell data. For the sample-level hyperparameters we set 7;; = 10 for
for the bulk samples and ~;; = 0.1 for the single cell samples. We set the
number of reads per sample (across 5 genomic locations), R;; = 100 — each
genomic location has an average of 20 reads. The variables h was sampled
randomly from p(h;, = (0,1,2)) = (0.45,0.1,0.45). The marginal posterior
distributions g”|x, ¢'|x, gl and h were estimated using MCMC samples
generated from Algorithm 1. We sampled 490 posterior samples after a burn-
in/warm-up of 1,000 samples and thinning by a factor of 100. Table 3 shows
the summary statistics for each of five random samples of h.

Experiments |k — k|1 KL(g"|¢") KL(gillg:)  KL(gillgis)

1 0.133 1.122 2.046 (0.060)  2.065 (1.10)

2 0 1.435 1.682 (0.696) 2.029 (1.215)

3 0 1.720 2.296 (0.522)  3.226 (1.942)

4 0.133 1.008 1.596 (0.697) 2.445 (1.816)

5 0 0.917 1.683 (0.310)  3.068 (1.980)
TABLE 3

Stmulation results of varying h. The values in parentheses of KL divergence columns are
the standard deviation of the KL divergence.

From the table we can see the model successfully identifies the genotypes
of all of the subpopulations exactly in 3 out of 5 experiments and makes
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Fig 13: Sensitivity analysis varying h. (left) Average KL divergence between true subpop-
ulation distribution and estimated. (right) Average distance between true subpopulation
genotype and estimated for five replicates.

only small errors in the two others. The marginal posterior distributions are
close to the true distribution as well.

E.2. Sensitivity to varying K. Five groups of simulations with dif-
ferent K were conducted to examine the sensitivity of the model to varying
the number of subpopulations, K. We set K € {4,5,6, 8,10} for each group,
and in each group we did three simulations with different realizations of h.
We set number of genomic locations, L = 10, to ensure there are is sufficent
genotype space for different subpopulations when K is larger. we set num-
ber of reads per sample (across 10 genomic locations), R;; = 100 — each
genomic location has an average of 10 reads.

We used the same settings as the benchmark experiments: a =1, §; = 1
for all i, el(zulk) = el(sulk) = 0.01 for bulk data and egzc) = egzc) = 0.15 for
single cell data. For the sample-level hyperparameters we set +;; = 10 for for
the bulk samples and ~;; = 0.1 for the single cell samples. The matrix h was
sampled with p(hy, = (0,1,2)) = (0.45,0.1,0.45) randomly. The marginal
posterior distributions g”|z, ¢'|x, g|x and h were estimated using MCMC
samples generated from Algorithm 1. We sampled 490 posterior samples
after a burn-in/warm-up of 1,000 samples and thinning by a factor of 100.
Whether the model finds all true components and the mean KL divergence
at each level for five experiments are shown below in Table 4 and Figure 14.

From the table we can see, even the number of true component increased
10, the model can find the true components of h. The main reason that
some simulations can’t find the remaining components is that the parametric
model does not generate enough remaining component data at sample level.
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K |h—h|h KL(g"lg")  KL(gillg:") KL(g;gi;)

4 0.15(0.132) 1.171 (0.224) 2.619 (1.312) 5.419 (4.90)

5 0.14(0.242)  0.994 (0.473) 2.785 (1.914)  5.941 (4.438)

6  0.272(0.183) 1.206 (0).255 2.576 (0.722)  4.760 (2.551)

8 0.280(0.101) 0.969 (0.049) 3.010 (0.479)  6.664 (1.062)

10 0.25(0.017) 1 (0.110) 5.574 (2.074) 10.793 (3.086)
TABLE 4

49

Simulation results of varying K. The values in parentheses of KL divergence columns are
the standard deviation of the KL divergence.

i

Number of true components (K)
>

I

Number of true components (K)

5
KL Divergence

01

0.2
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Fig 14: Sensitivity analysis varying K. (left) Average KL divergence between true subpop-
ulation distribution and estimated. (right) Average distance between true subpopulation

genotype and estimated.
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Fig 15: Sensitivity analysis varying L. (left) Average KL divergence between true subpop-
ulation distribution and estimated. (right) Average distance between true subpopulation
genotype and estimated.

E.3. Sensitivity to varying L. Five groups of simulations with dif-
ferent values of L were conducted to examine the sensitivity of L. We set
L € {5,10,20,50,100} for each group, and in each group we did three simu-
lations with randomly sampled h. The true number of subpopulations was
set to K =3

We kept other settings same as we did in the previous section: a = 1,
Bi =1 for all i, ¢ 7™ = ™™ — .01 for bulk data and € = ¢ = 0.15
for single cell data. The prior concentration parameter for each sample was
set to 7;; = 10 for bulk samples and ~;; = 0.1 for single-cell samples. The
subpopulation-genotype matrix h was generated with a prior where p(hy, =
(0,1,2)) = (0.45,0.1,0.45) randomly. The marginal posterior distributions
g"|z, g'|x, g|x and h were estimated using MCMC samples generated from
Algorithm 1. To reduce the running time, we sampled 900 posterior samples
after a burn-in/warm-up of 1,000 samples and thinning by a factor of 10.

L Il — hllx KL(g"lg")  KL(gillgi')  KL(gi;llgi;)
5 0 0.892 (0.201)  1.448 (0.660) 2.455 (1.477)
10 0.122 (0.157)  0.957 (0.217)  2.27 (1.547)  3.944 (3.708)
20  0.322 (0.310) 0.837 (0.585) 4.611 (3.722) 7.327 (5.685)
50 0.175 (0.154) 3.032 (0.369) 3.454 (0.414) 3.864 (0.388)
100 0.182 (0.143)  3.754 (0.640) 3.978 (0.220)  4.720 (1.046)

TABLE 5
Simulation results of varying L. The values in parentheses of KL divergence columns are
the standard deviation of the KL divergence.

Table 5 and Figure 15 show the accuracy of the estimated distribution
over subpopulations and subpopulation genotypes according to the metrics
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previously defined. The results show that the goodness-of-fit and accuracy
of the products of inference are stable for a wide range of the number of
targeted genomic loci.

E.4. Sensitivity to varying €. In the real data analysis, specifying the
sequencing error parameter for single-cell data can be problematic, because
in practice, the error is unknown (although for bulk data it can be argued the
error is small). Thus we conduct five groups of simulations to examine the

sensitivity of e( <) and el(zc). We set el(z) = el(sc € {0.1,0.15,0.20,0.25,0.3}.
For each group, and in each group we did three simulations with different
values of h and we set the number of true subpopulations to K = 3

We kept other settings same as we did in the previous section: o = 1,
B; = 1 for all 7. The subpopulation-genotype matrix h was generated with
a prior where p(hy, = (0,1,2)) = (0.45,0.1,0.45) randomly. The marginal
posterior distributions g”|x, g'|, g|x and h were estimated using MCMC
samples generated from Algorithm 1. We sampled 490 posterior samples
after a burn-in/warm-up of 1,000 samples and thinning by a factor of 100.

S = |h-hln  KL(@'l§")  KL(gllg')  KL(gillgi)
0.10 0.089 (0.154)  0.731 (0.773) 0.701 (0.595)  0.642 (0.555)
0.15 0.200 (0.176) 0.823 (0 142) 0.958 (().174) 0.924 (0 257)
0.20 0.067 (0.115) 1.149 (0 435) 1.371 (0.715) 1.393 (0 724)
0.25 0.067 (0.067) 1.056 (0.231) 1.116 (0.284) 1.180 (0.297)
0.3 0.111 (0.192)  1.39 (0.883)  1.277 (0.570) 1.259 (0.432)

TABLE 6

Simulation results of varying e( ) and e(sc) The values in parentheses of KL divergence

columns are the standard deviation of the KL divergence.

Table 6 and Figure 16 show the accuracy of the estimated distribution
over subpopulations and subpopulation genotypes according to the metrics
previously defined. There is a slight degradation of performance of the sub-
population distribution estimates as the number error rate of the single-cell
data is increased. We conjecture that the robustness is a product of the
constraint that the -subpopulation genotype matrix must be discrete and
multiple simultaneous sequencing errors would be required to overwhelm
the capability of the model to infer the discrete genotype.
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Fig 16: Sensitivity analysis varying efjf) and el(sc). (left) Average KL divergence between

a
true subpopulation distribution and estimated. (right) Average distance between true

subpopulation genotype and estimated.
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APPENDIX F: ALL DATASET ANALYSIS

F.1. Genomic Loci Selected for Inference. Inference on the ALL
dataset using Algorithm 1 used a curated subset of loci from the original
study paper (Gawad, Koh and Quake, 2014). Table 7 shows a listing of all
111 nonsynonymous mutations identified in that study referenced to hg38
coordinates. A star next to the locus indicates it was selected in the curated
subset. Inference on the ALL dataset using Algorithm 2 used the full set of
111 loci of which 109 are identifiable in the full set of single-cell data.

F.2. Samples selected for Inference. Inference on the ALL dataset
using Algorithm 1 and Algorithm 2 used a subset of samples from the original
study paper (Gawad, Koh and Quake, 2014). Table 8 shows a listing of the
samples.

F.3. Convergence. We used Geweke’s diagnostics to check the con-
verge. Geweke’s diagnostics is the test that comparing mean of first 10%
and last 50% of the MCMC chains (Geweke, 1991).

We used Geweke’s diagnostics function in pyme3 package to apply this
test (John Salvatier Thomas V. Wiecki, 2016). This function compares mean
of the first 10% samples of the chain and slices of the last 50 % samples of
the chain and returns Z scores. Scores for a converged chain would oscillate
between -1 and 1. Chains associated components with high probabilities
passed the test. Figure 17 shows the scores of three chains of the Geweke’s
diagnostics over different levels of some dimensions. We can see the scores
are oscillating between -1 and 1.
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Fig 17: Geweke’s test at different levels

Trace plots in Figure 18 show that the sampler has converged as well.

F.4. Read count tables and posterior distributions for Model hDP.
The figures below are the combination of read count tables and posterior
distributions for Patient 1-6. The left side are the read count tables for
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Locus (hg38) Gene Locus (hg38) Gene Locus (hg38) Gene
chr1:36282610 THRAP3 chr8:25319665 DOCKS5 chr17:10523184 MYH?2
chr1:41484129 EDN2 chr8:42305190 IKBKB chr17:39439170 MED1
chr1:47144592 CYP4A22 chr8:73081054 SBSPON chr17:45241470 FMNL1
chr1:65429930 LEPROT chr8:104013561 RIMS2 chr17:58087167  DYNLL2
chr1:74572702 Clorf173 chr8:109119136 TRHR chr17:58327917 BZRAP1
chr1:108699693 PRPF38B chr8:125011548 SQLE chr18:69599492 DOK6
chr1:220136888  IARS2 chr8:143468539 ZC3H3 chr19:10291260  ICAMS5
chr2:36743187 VIT chr8:143838738 NRBP2 chr19:12764849 HOOK2
chr2:51028023 NRXN1 chr8:143920874* PLEC chr19:19349426 MAU2
chr2:102340723  IL1RL1 chr8:143924816* PLEC chr19:37612716 ZNF540
chr2:108749028  RANBP2 chr9:89605491 GADD45G | chr19:37669839  ZNF781
chr2:169637471* PPIG chr9:113596819 RGS3 chr19:40389761 HIPK4
chr2:178531094 TTN chr9:114406547 DFNB31 chr19:44819680 BCAM
chr2:178751268 TTN chr9:130053958 GPR107 chr19:51414455 SIGLEC10
chr2:191846921 SDPR chr9:137028806 ABCA2 chr19:52384775* ZNF880
chr2:195853387  DNAH7Y chr10:32293720 EPC1 chr20:45222995 SEMG2
chr2:219575504  INHA chr10:69097200 SRGN chr20:53253823 TSHZ2
chr2:231108908  HTR2B chr10:100295080 PKD2L1 chr21:46112405 COL6A2
chr3:51225696 DOCK3 chr10:100924346* FAMI178A | chr22:37643750 SH3BP1
chr3:147413487  ZIC1 chr10:100924409* FAMI78A | chrX:20042572 MAP7D2
chr3:149207404 CP chr10:116555216 PNLIP chrX:34944563 FAMA47B
chr3:160279300  IFTS80 chr10:117137896  VAX1 chrX:48802875 HDAC6
chr4:4274574 LYAR chr10:127374104 DOCK1 chrX:51895445 MAGED1
chr4:10077821 WDRI1 chr11:6601517 RRP8 chrX:71141950 MED12
chr4:13542233 NKX3-2 chr11:71549007 KRTAP5-9 | chrX:80677205 BRWD3
chr4:15007408 CPEB2 chr11:121550594 SORL1 chrX:102603414 ARMCX5
chr4:39874390 PDS5A chr12:25227337* KRAS chrX:118628217 DOCK11
chr4:147542558  EDNRA chr12:25245328* KRAS chrX:126165005 DCAF12L2
chr4:186618077* FAT1 chr12:80619462 PTPRQ chrX:141879215 MAGEC3
chr5:58458999 PLK?2 chr12:104082836 HCFC2
chrb:81343827 ACOT12 chr12:107618313 BTBD11
chr5:139317101  MATRS chr13:102746379  CCDC168
chrb:141399025 PCDHGB5 | chr14:41887271 LRFN5
chr6:33799111 MLN chr14:69952279 SMOC1
chr6:56466116 DST chr15:33660305 RYRS3
chr6:56476181 DST chr15:71960041 MYO9A
chr6:131637429  ENPP3 chr16:66963323 CES3
chr7:12383545 VWDE chr16:67297619 KCTD19
chr7:18644770%* HDAC9 chr16:70371413 DDX19A
chr7:98978259 TRRAP chr17:1754190 SERPINF2
chr7:138906974  KIAA1549 | chrl7:7501644 POLR2A

TABLE 7
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Patient Sample Type Read Count Across Ten Loci
Bulk bulk 632
1 Cell.1.510  single-cell 15
Cell_.1.S100  single-cell 11
Cell_1.5101  single-cell 12
Bulk bulk 792
9 Cell 2.510  single-cell 10
Cell 2.5100 single-cell 18
Cell_2.S101  single-cell 2
Bulk bulk 806
3 Cell_3.S100  single-cell 36
Cell_-3_5101  single-cell 45
Cell_3.S118  single-cell 37
Bulk bulk 850
4 Cell 4.S101  single-cell 36
Cell 4.S107  single-cell 32
Cell 4.S110  single-cell 31
Bulk bulk 837
5 Cell 5.S10  single-cell 43
Cell.5.S100  single-cell 51
Cell.5.S101  single-cell 60
Bulk bulk 873
6 Cell 6510  single-cell 7
Cell_6_.S100  single-cell 9
Cell 6_.S101  single-cell 13
TABLE 8

Samples selected from ALL data for data analysis.
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(a) G” level (b) G’ level (c) G level

Fig 18: Trace plots at different levels of the model hierarchy.

Patient 1-6 across ten loci (one bulk sample and three single-cell samples
selected for each patient). The major/minor allele ratios are shown in paren-
thesis after each read count. Zero read counts are shown as dashes indicating
missing data at those loci. The right side are the posterior distributions for
Patient 1-6 at all levels. Red bars show the population level distribution over
subpopulations (g”|H,x), blue bars show the individual level distribution
(g'|H, x), and green bars show the sample level distributions (g|H, x), where
H = {hy | 3gijr > 0.05, for i =1,2,3,4,5,6 and j =1,2,3,4}.
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Table 9: Read Count Table for Patient 1  Fig 19: Posterior Distribution of Patient 1
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Table 10: Read Count Table for Patient 2 Fig 20: Posterior Distribution of Patient 2

£ E 1 Population
5 g Individual
H « Bulk
g & §100
N = 3101
] © S118
—
olojojofofojo . - .
-
oj2[oofolojofo pfe .
Patient 3 opoppp 5 . -
BULK S100 s101 S118 [—
PPIG (chr2:169637471) 88 (87/1) — — — O[of[0jojojo oo 1 R "
FAT1 (chrd:186618077) 47 (47/0) — — — “
HDACS (chr7:18644770) 52 (32/20) 17 (1/16) 14 (14/0) 14 (2/12) —
PLEC (chr8:143920874) 45 (45/0) - — - olololol2lolo -
PLEC (chr8:143924816) 101 (99/2) — — — lo -
FAMI178A (chr10:100924346) 94 (94/0) — — — —
FAMITSA (chr10:100924409) 34 (34/0) — — — .
KRAS (chr12:25227337) 154 (154/0) oppftf
KRAS (chr12:25245328) 155 (155/0) — — — o5 5 o7
ZNF880 (chrl19:52384775) 36 (30/6) 19 (19/0) 31 (30/1) 23 (22/1) Pasterior Probability

Table 11: Read Count Table for Patient 3 Fig 21: Posterior Distribution of Patient 3
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Table 12: Read Count Table for Patient 4 Fig 22: Posterior Distribution of Patient 4
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Table 13: Read Count Table for Patient 5 Fig 23: Posterior Distribution of Patient 5
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Table 14: Read Count Table for Patient 6 Fig 24: Posterior Distribution of Patient 6

F.5. Posterior Distribution of h from Model hDP. Table 15 shows
one posterior sample of h. h is discrete and each row represents a potential
component which will associate with probabilities of g, g”, and g”.

F.6. h matrix Inference from Gamma-Poisson Model.

Figure 25

shows a posterior sample of h for the subpopulations identified for Patient

1.

F.7. Co-occurence Networks for Patients 1-6. The figures show
the adjacency matrices in network form for Patient 1-6 where an edge be-
tween [ and I’ is drawn if a;» > 0.50. Loci without edges to other loci are

omitted.
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TABLE 15

One posterior sample of h matriz, loci are shown in hg38 coordinates
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Fig 25: Posterior sample from h for Patient 1.
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Fig 26: Inferred mutation co-occurence network across Patient 1 from Model hGP.
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Fig 27: Inferred mutation co-occurence network across Patient 2 from Model hGP.
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Fig 28: Inferred mutation co-occurence network across Patient 3 from Model hGP.
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Fig 29: Inferred mutation co-occurence network across Patient 4 from Model hGP.
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Fig 30: Inferred mutation co-occurence network across Patient 5 from Model hGP.
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Fig 31: Inferred mutation co-occurence network across Patient 6from Model hGP.


https://doi.org/10.1101/2020.11.10.330183
http://creativecommons.org/licenses/by-nc/4.0/

	Introduction
	Problem Setup
	Our contributions
	Related Work
	Hierarchical Dirichlet Process Mixture Models
	Bioinformatic models for clonal subpopulation inference


	Hierarchical Dirichlet Process Mixture Probability Model
	Sampling Model
	Hierarchical Prior
	Hyperparameters
	Complete Hierarchical Dirichlet Process Model
	Inference Algorithm for Hierarchical Dirichlet Process Model

	Hierarchical Gamma-Poisson Probability Model
	Sampling Model
	Hierarchical Prior
	Hyperparameters
	Complete Gamma-Poisson Model
	Interpretation as a Hierarchical Dirichlet Process Mixture Model

	Augment-and-Marginalize Gibbs Sampling for Gamma–Poisson Model
	Latent subcounts
	Augment-and-marginalize
	Algorithm

	Simulation Experiments
	Acute Lymphoblastic Leukemia Experiments
	Preprocessing
	Posterior Inference using Model hDP
	Posterior Inference using Model hGP

	Discussion
	Acknowledgements
	References
	Related Work
	Hierarchical Dirichlet Process Mixture Model MCMC Sampler Derivation
	Gamma-Poisson Model and Inference
	Simulation Experiments
	Posterior Inference
	Comparison with LDA and NNMF 
	Comparison with Pyclone, PhyloWGS and TreeClone

	Sensitivity to varying h, K, L, and e
	Sensitivity to varying h
	Sensitivity to varying K
	Sensitivity to varying L
	Sensitivity to varying e

	ALL Dataset Analysis
	Genomic Loci Selected for Inference
	Samples selected for Inference
	Convergence
	Read count tables and posterior distributions for Model hDP
	Posterior Distribution of h from Model hDP
	h matrix Inference from Gamma-Poisson Model
	Co-occurence Networks for Patients 1–6

	Author's addresses

