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Abstract
As more aspects of social interaction are digi-
tally recorded, there is a growing need to develop
privacy-preserving data analysis methods. So-
cial scientists will be more likely to adopt these
methods if doing so entails minimal change to
their current methodology. Toward that end, we
present a general and modular method for privatiz-
ing Bayesian inference for Poisson factorization,
a broad class of models that contains some of the
most widely used models in the social sciences.
Our method satisfies local differential privacy,
which ensures that no single centralized server
need ever store the non-privatized data. To for-
mulate our local-privacy guarantees, we introduce
and focus on limited-precision local privacy—the
local privacy analog of limited-precision differen-
tial privacy (Flood et al., 2013). We present two
case studies, one involving social networks and
one involving text corpora, that test our method’s
ability to form the posterior distribution over la-
tent variables under different levels of noise, and
demonstrate our method’s utility over a naı̈ve ap-
proach, wherein inference proceeds as usual, treat-
ing the privatized data as if it were not privatized.

1. Introduction
Data from social processes often take the form of discrete ob-
servations (e.g., edges in a social network, word tokens in an
email) and these observations often contain sensitive infor-
mation about the people involved. As more aspects of social
interaction are digitally recorded, the opportunities for social
scientific insights grow; however, so too does the risk of un-
acceptable privacy violations. As a result, there is a growing
need to develop privacy-preserving data analysis methods.

In practice, social scientists will be more likely to adopt
these methods if doing so entails minimal change to their
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current methodology. Toward that end, under the framework
of differential privacy (Dwork et al., 2006), we present a
method for privatizing Bayesian inference for Poisson fac-
torization (Titsias, 2008; Cemgil, 2009; Zhou & Carin, 2012;
Gopalan & Blei, 2013; Paisley et al., 2014), a broad class of
models for learning latent structure from discrete data. This
class contains some of the most widely used models in the
social sciences, including topic models for text corpora (Blei
et al., 2003; Buntine & Jakulin, 2004; Canny, 2004), genetic
population models (Pritchard et al., 2000), stochastic block
models for social networks (Ball et al., 2011; Gopalan &
Blei, 2013; Zhou, 2015), and tensor factorization for dyadic
data (Welling & Weber, 2001; Chi & Kolda, 2012; Schmidt
& Morup, 2013; Schein et al., 2015; 2016b); it further
includes deep hierarchical models (Ranganath et al., 2015;
Zhou et al., 2015), dynamic models (Charlin et al., 2015;
Acharya et al., 2015; Schein et al., 2016a), and many others.
Our method is general and modular, allowing social scien-
tists to build on (instead of replace) their existing derivations
and implementations of non-private Poisson factorization.
To derive our method, we rely on a novel reinterpretation
of the geometric mechanism (Ghosh et al., 2012), as well
as a previously unknown general relationship between
the Skellam (Skellam, 1946), Bessel (Yuan & Kalbfleisch,
2000), and Poisson distributions; we note that these new
results may be of independent interest in other contexts.

Our method satisfies a strong variant of differential privacy—
i.e., local privacy—under which the sensitive data is priva-
tized (or noised) via a randomized response method before
inference. This ensures that no single centralized server
need ever store the non-privatized data—a condition that is
non-negotiable in many real-world settings. The key chal-
lenge introduced by local privacy is how to infer the latent
variables (including model parameters) given the privatized
data. One option is a naı̈ve approach, wherein inference pro-
ceeds as usual, treating the privatized data as if it were not
privatized. In the context of maximum likelihood estimation,
the naı̈ve approach has been shown to exhibit pathologies
when observations are discrete or count-valued; researchers
have therefore advocated for treating the non-privatized ob-
servations as latent variables to be inferred (Yang et al.,
2012; Karwa et al., 2014; Bernstein et al., 2017). We em-
brace this approach and extend it to Bayesian inference,
where our aim is to form the posterior distribution over the
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Figure 1. Topic recovery: our method vs. the naı̈ve approach. (a) We generated the non-privatized data synthetically so that the true
topics were known. We then privatized the data using (b) a low noise level and (c) a high noise level. The heatmap in each subfigure
visualizes the data, using red to denote positive counts and blue to denote negative counts. With a high noise level, the naı̈ve approach
overfits the noise and therefore fails to recover the true topics. We describe this experiment in more detail in section 5.2.

latent variables conditioned on the privatized data and the
randomized response method; our method is asymptotically
guaranteed to draw samples from this posterior distribution.

We present two case studies applying our method to 1)
overlapping community detection in social networks and
2) topic modeling for text corpora. In order to formulate
our local-privacy guarantees, we introduce and focus on
limited-precision local privacy—the local privacy analog of
limited-precision differential privacy, originally proposed
by Flood et al. (2013). For each case study, we report a suite
of experiments that test our method’s ability to form the
posterior distribution over latent variables under different
levels of noise. These experiments also demonstrate the
utility of our method over the naı̈ve approach for both case
studies; we provide an illustrative example in figure 1.

2. Background and problem formulation
Differential privacy. Differential privacy (Dwork et al.,
2006) is a rigorous privacy criterion that guarantees that no
single observation in a data set will have a significant influ-
ence on the information obtained by analyzing that data set.
Definition 2.1. A randomized algorithm A(·) satisfies ✏-
differential privacy if for all pairs of neighboring data sets
Y and Y

0 that differ in only a single observation

P (A(Y ) 2 S)  e

✏

P (A(Y

0
) 2 S) (1)

for all subsets S in the range of A(·).

Local differential privacy. We focus on local differential
privacy, which we refer to as local privacy. In this setting,
the observations remain private from even the data analysis
algorithm. The algorithm only sees privatized versions of
the observations, often constructed by adding noise from

specific distributions. The process of adding noise is known
as randomized response—a reference to survey-sampling
methods originally developed in the social sciences prior
to the development of differential privacy (Warner, 1965).
Definition 2.2. A randomized response method R(·) is
✏-private if for all pairs of observations y, y

0 2 Y

P (R(y) 2 S)  e

✏

P (R(y

0
) 2 S) (2)

for all subsets S in the range of R(·). If a data analysis
algorithm sees only the observations’ ✏-private responses,
then the data analysis itself satisfies ✏-local privacy.

Limited-precision local privacy. Definition 2.2 requires
that condition 2 hold for all pairs of observations y, y

0 2 Y .
In practice, this is notoriously difficult to achieve when Y
is extremely large, meaning that any pair of observations
may be arbitrarily different, as is often the case with data
from social processes. We therefore introduce and focus on
limited-precision local privacy—the local privacy analog of
limited-precision differential privacy, originally proposed
by Flood et al. (2013) and subsequently used to privatize
analyses of geographic location data (Andrés et al., 2013)
and financial network data (Papadimitriou et al., 2017). Al-
though limited-precision local privacy is weaker than local
privacy, it can still provide reasonably strong guarantees.
Definition 2.3. If N is a positive integer, then a randomized
response method R(·) is (N, ✏)-private if for all pairs of
observations y, y

0 2 Y such that ky � y

0k1  N

P (R(y) 2 S)  e

✏

P (R(y

0
) 2 S) (3)

for all subsets S in the range of R(·). If a data analysis algo-
rithm sees only the observations’ (N, ✏)-private responses,
then the data analysis itself satisfies (N, ✏)-limited-precision
local privacy. If kyk1  N for all y 2 Y , then (N, ✏)-
limited-precision local privacy implies ✏-local privacy.
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Geometric mechanism. There are several standard
randomized response methods in the differential privacy
toolbox, many of which involve adding independently
generated noise to each element of each observation. Unfor-
tunately, the most commonly used noise mechanisms—the
Gaussian and Laplace mechanisms—are poor choices for
count data because they involve real-valued distributions.
We therefore focus on the geometric mechanism (Ghosh
et al., 2012), which can be viewed as the discrete analog
of the Laplace mechanism. The geometric mechanism adds
noise drawn from a two-sided geometric distribution to
each element of each observation. A two-sided geometric
random variable ⌧ ⇠ 2Geo(↵) is an integer ⌧ 2 Z. The
PMF for the two-sided geometric distribution is as follows:

2Geo(⌧ ;↵) =

1 � ↵

1 + ↵

↵

|⌧ |
. (4)

Theorem 2.4. (Proof in appendix.) If N is a positive inte-
ger and randomized response method R(·) is the geometric
mechanism with parameter ↵, then for any pair of obser-
vations y, y

0 2 Y such that ky � y

0k1  N , R(·) satisfies

P (R(y) 2 S)  e

✏

P (R(y

0
) 2 S) (5)

for all subsets S in the range of R(·), where

✏ = N ln

⇣

1

↵

⌘

. (6)

Therefore, the geometric mechanism with parameter ↵ is
an (N, ✏)-private randomized response method with ✏ =

N ln (

1
↵

). If a data analysis algorithm sees only the obser-
vations’ (N, ✏)-private responses, then the data analysis
itself satisfies (N, ✏)-limited precision local privacy.

Differentially Private Bayesian inference. In Bayesian
statistics, we begin with a probabilistic model M that
relates observable variables Y to latent variables Z via
a joint distribution PM(Y, Z). The goal of inference is
then to compute the posterior distribution PM(Z | Y ) over
the latent variables conditioned on observed values of
Y . The posterior is almost always analytically intractable
and thus inference involves approximating it. The two
most common methods of approximate Bayesian inference
are variational inference, wherein we fit the parameters
of an approximating distribution Q(Z | Y ), and Markov
chain Monte Carlo (MCMC), wherein we approximate the
posterior with a finite set of samples {Z

(s)}S

s=1 generated
via a Markov chain whose stationary distribution is the exact
posterior. We can conceptualize each of these methods as
a randomized algorithm A(·) that returns an approximation
to the posterior distribution PM(Z | Y ); in general A(·)
does not satisfy ✏-differential privacy. However, if A(·)
is an MCMC algorithm that returns a single sample from
the posterior, it guarantees privacy (Dimitrakakis et al.,
2014; Wang et al., 2015; Foulds et al., 2016). Adding noise

to posterior samples can also guarantee privacy (Zhang
et al., 2016), though this set of noised samples { ˜

Z

(s)}S

s=1

collectively approximate some distribution ˜

PM(Z | Y )

that depends on ✏ and is different than the exact posterior
(but close, in some sense, and equal when ✏ ! 0). For
specific models, we can also noise the transition kernel of
the MCMC algorithm to construct a Markov chain whose
stationary distribution is again not the exact posterior, but
something close that guarantees privacy (Foulds et al.,
2016). We can also take an analogous approach to privatize
variational inference, wherein we add noise to the sufficient
statistics computed in each iteration (Park et al., 2016).

Locally private Bayesian inference. We first formalize
the general objective of Bayesian inference under local pri-
vacy. Given a generative model M for non-privatized data
Y and latent variables Z with joint distribution PM(Y, Z),
we further assume a randomized response method R(·) that
generates privatized data sets: ˜

Y ⇠ PR(

˜

Y | Y ). The aim of
Bayesian inference is then to form the following posterior:

PM,R(Z | ˜

Y ) =

PR(Y | Ỹ ) [PM(Z | Y )]

=

Z

PM(Z | Y ) PR(Y | ˜

Y ) dY. (7)

This distribution correctly characterizes our uncertainty
about the latent variables Z, conditioned on all of our
observations and assumptions—i.e., the privatized data ˜

Y ,
the model M, and the randomized response method R. The
expansion in equation 7 shows that this posterior implicitly
treats the non-privatized data Y as a latent variable and
marginalizes over it using the mixing distribution PR(Y | ˜

Y )

which is itself a posterior that characterizes our uncertainty
about Y given ˜

Y and the randomized response method. The
key observation here is that if we can generate samples from
PR(Y | ˜

Y ), we can use them to approximate the expectation
in equation 7, assuming that we already have a method for
approximating the non-private posterior PM(Z | Y ). In the
context of MCMC, alternating between sampling values of
the non-privatized data from its complete conditional—i.e.,
Y

(s) ⇠ PM,R(Y | Z(s�1)
,

˜

Y )—and sampling values
of the latent variables—i.e., Z

(s) ⇠ PM(Z | Y (s)
)—

constitutes a Markov chain whose stationary distribution
is PM,R(Z, Y | ˜

Y ). In scenarios where we already have
derivations and implementations for sampling from
PM(Z | Y ), we need only be able to sample efficiently
from PM,R(Y | Z,

˜

Y ) in order to obtain a locally private
Bayesian inference algorithm; whether we can do this
depends heavily on our assumptions about M and R.

We note that the objective of Bayesian inference under
local privacy, as defined in equation 7, is similar to that
of Williams & McSherry (2010), who identify their key
barrier to inference as being unable to analytically form the
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marginal likelihood that links the privatized data to Z:

PM,R(

˜

Y | Z) =

Z

PR(

˜

Y | Y ) PM(Y | Z) dY. (8)

In the next sections, we show that if M is a Poisson factor-
ization model and R is the geometric mechanism, then we
can analytically form this marginal likelihood and derive an
efficient MCMC algorithm that is asymptotically guaranteed
to generate samples from the posterior in equation 7.

3. Locally private Poisson factorization
Poisson factorization. We assume that Y is a count-valued
data set. We further assume that each count y

n

2 + in
this data set is an independent Poisson random variable
y

n

⇠Pois(µ
n

), where the count’s latent rate parameter µ

n

is a function of the latent variables Z. This class of models
is known as Poisson factorization and, as described in sec-
tion 1, includes many widely used models in social science.
For example, the mixed-membership stochastic block model
for social networks (Ball et al., 2011; Gopalan & Blei, 2013;
Zhou, 2015) corresponds to the case where Y is a V ⇥ V

count matrix; n = (i, j), where i, j 2 [V ]; Z = {⇥, ⇧};
⇥ and ⇧ are V ⇥ C and C ⇥ C non-negative, real-valued
matrices, respectively; and µ

ij

=

P

C

c=1

P

C

d=1 ✓ic

✓

jd

⇡

cd

.
Similarly, latent Dirichlet allocation (Blei et al., 2003)—a
well-known topic model for text corpora—corresponds
to the case where Y is a D ⇥ V count matrix; n = (d, v),
where d 2 [D] and v 2 [V ]; Z = {⇥, �}, where ⇥ and �

are D ⇥ K and K ⇥ V non-negative, real-valued matrices,
respectively; and µ

dv

=

P

K

k=1 ✓dk

�

kv

. In both cases, it
is standard to assume independent gamma priors over the
elements of the latent matrices that comprise Z; doing so
facilitates efficient Bayesian inference of these matrices via
gamma–Poisson conjugacy (when conditioned on Y ).

Geometric mechanism. We focus on the geometric mech-
anism (Ghosh et al., 2012) because it is a natural choice for
count data. By reinterpreting the geometric mechanism as
involving Skellam noise and deriving a general relationship
between the Skellam, Bessel, and Poisson distributions, we
are able to obtain analytic tractability and efficient Bayesian
inference while also maintaining local privacy guarantees.
In particular, we show that augmenting our model with
auxiliary variables �

n

= (�

n1,�n2) allows us to analyti-
cally form the marginal likelihood PM,R(ỹ

n

| µ
n

, �
n

) and
sample efficiently from PM,R(y

n

| ỹ
n

, µ

n

, �
n

), as desired.

Each non-privatized count y

n

is generated by our model
M—i.e., y

n

⇠Pois(µ
n

)—and then privatized as follows:

⌧

n

⇠ 2Geo(↵), ỹ

(±)
n

:= y

n

+ ⌧

n

. (9)

We use (±) to emphasize that unlike y

n

(which must be
non-negative) ỹ

(±)
n

2 may be non-negative or negative.

Theorem 3.1. (Proof in appendix.) A two-sided geometric
random variable ⌧ ⇠ 2Geo(↵) can be generated as follows:

�1,�2 ⇠ Exp(

↵

1�↵

), ⌧ ⇠ Skel(�1,�2), (10)

where the Skellam distribution is the marginal distribution
over the difference ⌧ := g1�g2 of two independent Poisson
random variables g1 ⇠ Pois(�1) and g2 ⇠ Pois(�2).

Via theorem C.1, we can express the generative process for
ỹ

(±)
n

in three equivalent ways, shown in figure 2, each of
which provides a unique and necessary insight. The first
way (process 1) is useful for showing that our MCMC algo-
rithm guarantees privacy, since two-sided geometric noise is
an existing privacy mechanism. The second way (process 2)
represents the two-sided geometric noise in terms of a pair
of Poisson random variables with exponentially distributed
rates; in so doing, it reveals the auxiliary variables that
facilitate inference. The third way (process 3) marginalizes
out all three Poisson random variables (including y

n

), so
that ỹ

(±)
n

is directly drawn from a Skellam distribution,
which also happens to be the desired marginal likelihood
PM,R(ỹ

n

| µ
n

, �
n

) under the geometric mechanism. To
derive the second and third ways, we use theorem C.1,
the definition of the Skellam distribution, and the additive
property of two or more Poisson random variables.

4. MCMC algorithm
We now rely on a previously unknown general relation-
ship between the Skellam, Bessel, and Poisson distribu-
tions to derive an efficient way to draw samples from
PM,R(y

n

| ỹ
n

, µ

n

, �
n

). As explained in section 2, this is all
we need to obtain an locally private MCMC algorithm for
drawing samples of the latent variables given the privatized
data, provided we already have a way to draw samples of
the latent variables given the non-private data. The input to
this MCMC algorithm is the privatized data set ˜

Y

(±).

Theorem 4.1. (Proof in appendix.) Consider two Poisson
random variables y1 ⇠ Pois(�1) and y2 ⇠ Pois(�2).
Their minimum m := min{y1, y2} and their difference
� := y1 � y2 are deterministic functions of y1 and y2.
However, if not conditioned on y1 and y2, the random
variables m and � can be marginally generated as follows:

� ⇠ Skel(�1,�2), m ⇠ Bes
⇣

|�|, 2
p

2�1�2

⌘

. (11)

Yuan & Kalbfleisch (2000) give details of the Bessel distri-
bution, which can be sampled efficiently (Devroye, 2002).1

Lemma D.1 means that we can generate two independent
Poisson random variables by first generating their difference

1We have released our implementation of Bessel sampling. It
is the only open-source version of which we are aware.
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Process 1

—
⌧

n

⇠ 2Geo(↵)

y

n

⇠ Pois(µ
n

)

ỹ

(±)
n

:= y

n

+ ⌧

n

Process 2

�

n1,�n2 ⇠ Exp(

↵

1�↵

)

g

nl

⇠ Pois(�
nl

) for l 2 {1, 2}
y

n

⇠ Pois(µ
n

)

ỹ

(±)
n

:= y

n

+ g

n1 � g

n2

Process 3

�

n1,�n2 ⇠ Exp(

↵

1�↵

)

—
—

ỹ

(±)
n

⇠ Skel(�
n1+µ

n

, �

n2)

Figure 2. Three equivalent ways to generate ỹ(±)
n .

� and then their minimum m. Because � = y1 � y2, if � is
positive, then y2 must be the minimum and thus y1 = ��m.
In practice, this means that if we only get to observe the
difference of two Poisson-distributed counts, we can still
“recover” the counts by drawing a Bessel random variable.

Assuming that ỹ

(±)
n

⇠ Skel(�
n1 + µ

n

,�

n2) via theo-
rem C.1, we can represent ỹ

(±)
n

explicitly as the difference
between two latent non-negative counts: ỹ

(±)
n

= ỹ

(+)
n

�g

n2.
We can then define the minimum of these latent counts
to be m

n

= min{ỹ

(+)
n

, g

n2}. Given randomly initialized
latent variables, we can then sample a value of m

n

from
its conditional posterior, which is a Bessel distribution:

�

m

n

| �
�

⇠ Bes
⇣

|ỹ(±)
n

|, 2

p

(�

n1+µ

n

)�

n2

⌘

. (12)

Using this value, we can then compute ỹ

(+)
n

and g

n2:

ỹ

(+)
n

:= m

n

, g

n2 := ỹ

(+)
n

� ỹ

(±)
n

if ỹ

(±)
n

 0 (13)

g

n2 := m

n

, ỹ

(+)
n

:= g

n2 + ỹ

(±)
n

otherwise. (14)

Because ỹ

(+)
n

is the sum of y

n

and g

n1—two independent
Poisson random variables—we can then sample y

n

from
its conditional posterior, which is a binomial distribution:

�

y

n

| �
�

⇠ Binom
⇣

ỹ

(+)
n

,

µn

µn+�n1

⌘

(15)

Equations 12 through 15 constitute a way to draw samples
from PM,R(y

n

| ỹ
n

, µ

n

, �
n

). Given a sampled Y , we can
then draw samples of the latent variables from their condi-
tional posteriors, which are the same as in non-private Pois-
son factorization. Finally, we can also sample �

n1 and �
n2:

�

�

nl

| �
�

⇠ �

⇣

1 + g

nl

,

↵

1�↵

+ 1

⌘

for l 2 {1, 2}. (16)

Equation 16 follows from gamma–Poisson conjugacy
and the fact that the exponential prior over �

nl

can be
expressed as a gamma prior with shape parameter equal to
one—i.e., �

nl

⇠ �(1,

↵
1�↵ ). Equations 12–16, along with

the conditional posteriors for the latent variables, define
an MCMC algorithm that is asymptotically guaranteed to
generate samples from PM,R(Z | ˜

Y

(±)
) as desired.

5. Case studies
We now present two case studies applying our method to
1) overlapping community detection in social networks and
2) topic modeling for text corpora. For each case study,
we formulate local-privacy guarantees and ground them in
illustrative examples. We then report a suite of experiments
that test our method’s ability to form the posterior distri-
bution over latent variables for different types of data under
different levels of noise. We focus on synthetic and semi-
synthetic data to control for the effects of model mismatch
(i.e., non-Poisson observations); although model mismatch
is an important problem, it is outside the scope of this paper.
Using synthetic and semi-synthetic data also allows us to
vary high-level properties of the data (e.g., scale or sparsity).

Reference methods. We compare the performance of our
method to two references methods: 1) non-private Poisson
factorization on the non-privatized data and 2) non-private
Poisson factorization on the privatized data—i.e., the naı̈ve
approach, wherein inference proceeds as usual, treating the
privatized data as if it were not privatized.2 Throughout our
experiments, we use MCMC for both reference methods.

Performance measure. Ideally, we would directly compare
our method’s posterior distribution and the naı̈ve approach’s
posterior distribution to that of non-private Poisson factor-
ization on the non-privatized data. Unfortunately, all three
posteriors are analytically intractable. However, because we
use MCMC to approximate each posterior with a finite set
of samples of the latent variables, we can instead form the
expected value of µ

n

with respect to each one—e.g.,

µ̂

n

=

1

S

S

X

s=1

µ

(s)
n

⇡
PM,R(Z | Ỹ

(±)) [µ

n

] . (17)

Furthmore, because we focus on synthetic and semi-
synthetic data, we can use an aggregate loss function to
compare the expected values to the values used to generate
the data: 1

N

P

N

n=1 `(µ̂n

, µ

⇤
n

), where µ

⇤
n

is the “true” value.
We define `(µ̂

n

, µ

?

n

) to be the KL divergence of the Poisson
distribution implied by µ̂

n

from the Poisson distribution
implied by µ

?

n

. Comparing the value of this aggregate loss
2The naı̈ve approach first truncates negative counts to zero and

thus uses the truncated geometric mechanism (Ghosh et al., 2012).
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⇤
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(±)
ij

Increasing privacy

✏ = 2.5 ✏ = 1 ✏ = 0.75

True data y

ij

True µ

⇤
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Figure 3. Block structure recovery: our method vs. the naı̈ve approach. We generated the non-privatized data synthetically. We then
privatized the data using three different levels of noise. The top row depicts the data, using red to denote positive counts and blue to denote
negative counts. As the noise level increases, the naı̈ve approach overfits the noise and fails to recover the true µ?

ij values, predicting high
values even for sparse parts of the matrix. In contrast, our method recovers the latent structure, even for high noise levels.

function for our method and the value for naı̈ve approach
to the value for non-private Poisson factorization provides a
proxy for measuring the divergence of their posterior distri-
butions from that of non-private Poisson factorization.

5.1. Case study 1: Overlapping community detection

Organizations often want to know whether their employees
are interacting as efficiently and productively as possible.
For example, are there missing connections between employ-
ees that, if present, would significantly reduce duplication
of effort? Do the natural “communities” that emerge from
digitally recorded employee interactions match up with the
formal organizational structure? To answer these and other
questions, many organizations want to partner with social
scientists in order to gain actionable insights based on their
employees’ interactions. However, sharing such interaction
data increases the risk of privacy violations. Moreover, stan-
dard anonymization procedures can be reverse-engineered
adversarially and thus do not provide privacy guaran-
tees (Narayanan & Shmatikov, 2009). In contrast, the formal
privacy guarantees provided by differential privacy may be
sufficient for employees to consent to sharing their data.

Limited-precision local privacy. In this scenario, data set
Y is a V ⇥ V count matrix, where each element y

ij

2 +

in this matrix is the number of interactions from actor i 2 V

to actor j 2 [V ]. A single observation in this data set is a
single element. Via theorem 2.4, ỹ

(±)
ij

:= y

ij

+ ⌧

ij

, where
⌧

ij

⇠ 2Geo(↵), is (N, ✏)-private, where N is the precision
level and ✏ = N ln

�

1
↵

�

. Informally, this means that if the
difference between two observations is N or less, then their

privatized versions will be indistinguishable, provided ✏ is
sufficiently small. Furthermore, if y

ij

 N , then its priva-
tized version will be indistinguishable from the privatized
version of y

ij

= 0. For example, if i interacted with j three
times (i.e., y

ij

= 3) and N = 3, then an adversary would
be unable to tell from ỹ

(±)
ij

whether i had interacted with
j at all, provided ✏ is sufficiently small. We note that if
y

ij

� N , then an adversary would be able to tell that i had
interacted with j, though not the exact number of times.

Poisson factorization. As explained in section 3, the mixed-
membership stochastic block model for learning latent over-
lapping community structure in social networks (Ball et al.,
2011; Gopalan & Blei, 2013; Zhou, 2015) is a special case of
Poisson factorization where Y is a V ⇥V count matrix; n =

(i, j), where i, j 2 [V ]; Z = {⇥, ⇧}; ⇥ and ⇧ are V ⇥ C

and C ⇥ C non-negative, real-valued matrices, respectively;
and µ

ij

=

P

C

c=1

P

C

d=1 ✓ic

✓

jd

⇡

cd

. The factors ✓
ic

and ✓
jd

represent how much actors i and j participate in communi-
ties c and d, respectively, while the factor ⇡

cd

represents how
much actors in community c interact with actors in commu-
nity d. It is standard to assume independent gamma priors
over the factors—i.e., ✓

ic

,⇡

cd

⇠ Gamma(a0, b0), where a0

and b0 are shape and rate hyperparameters, respectively.

Synthetic data. We generated social networks of V = 20

actors with C = 5 communities. We randomly generated
the true parameters ✓⇤

ic

,⇡

⇤
cd

⇠�(a0, b0) by setting a0 =0.01

and b0 =0.5 to encourage sparsity; doing so exaggerates the
block structure in the network. We then sampled a data set
y

ij

⇠ Pois(µ⇤
ij

) and noised it ⌧
ij

⇠ 2Geo(↵) for three in-
creasing values of ↵. Since the magnitude of the counts y

ij
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Figure 4. Mean KL divergence of the Poisson distribution implied by µ̂ij from the Poisson distribution implied by µ⇤
ij ; lower is better.

Error bars denote standard deviation across five replications. Each subfigure reports the results across nine values of ↵ (higher values
mean more noise) for a given setting of e0 which controls the sparsity and magnitude of the count observations. As the counts grow larger
and denser, the performance of both private methods approaches the performance of non-private Poisson factorization for small values of
↵. Our method almost always outperforms the naı̈ve approach, with the difference being especially stark at higher noise levels.

varied across trials, we allowed the three values of ↵ to vary
by setting the precision to the empirical mean of the data
N :=

ˆ

[y

ij

] and setting ↵ := exp(�✏/N) for three values
of ✏ 2 {2.5, 1, 0.75}. For each model, we ran 8,500 sam-
pling iterations, saving every 25

th sample after the first 1,000
and using these samples to compute µ̂

ij

, as given in equa-
tion 17. In figure 3, we visually compare the estimates of
µ̂

ij

by our method and the naı̈ve approach, under the three
different noise levels, to the estimate by the non-private
method and to the true values µ

⇤
ij

. We see that the naı̈ve
approach overfits the noise, predicting high rates in sparse
parts of the matrix. In contrast, our method maintains a pre-
cise representation of the data even under high noise levels.

Enron. We processed the Enron corpus (Klimt & Yang,
2004) to obtain a V ⇥V adjacency matrix Y where y

ij

is the
number of emails sent from actor i to actor j. We included
an actor if they sent at least one email and sent or received at
least one hundred emails, yielding V = 161 actors. When
an email included multiple recipients, we incremented the
corresponding counts by one. We fit non-private Poisson fac-
torization to the data Y and obtained point estimates of the
factors ✓⇤

ic

and ⇡⇤
cd

. We then generated semi-synthetic data
sets y

ij

⇠ Pois(µ⇤
ij

) where we fixed ⇡⇤
cd

but re-scaled ✓⇤
ic

=

�

i

✓

⇤
ic

allowing �
i

to vary. Rescaling changes the overall
interaction rate of actor i without changing their relative fre-
quency of participation across communities; this allows us
to vary the scale and sparsity of the network while maintain-
ing realistic community block structure. We randomly gen-
erated �

i

⇠ �(e0f0, f0) for f0 = 0.1 and varying e0. Under
this parameterization of the gamma distribution the mean is

[�

i

] = e0; this allows us to increase the scale and density
of the data. We generated five semi-synthetic data sets for
three values of e0 2 {0.75, 1, 1.5} and nine levels of noise
↵ 2 {0.1, . . . , 0.9}. We applied our method and the naı̈ve
approach to each noised data set by running 15,000 sam-
pling iterations and saving every 25

th sample after the first
3,000 to compute µ̂

ij

. In figure 4, we report the mean KL

divergence of the Poisson distribution implied by µ̂

ij

from
the Poisson distribution implied by µ

⇤
ij

for both models.

5.2. Case study 2: Topic modeling

Topic models are in widely used in the social sciences
for learning latent topics (i.e., probability distributions
over some vocabulary) from text corpora, often to char-
acterize high-level thematic structure (e.g., Ramage et al.,
2009; Grimmer & Stewart, 2013; Mohr & Bogdanov, 2013;
Roberts et al., 2013). In many settings, these corpora con-
tain sensitive information about the people involved (e.g.,
emails, survey responses). As a result, people may be unwill-
ing to consent to sharing their data without formal privacy
guarantees, such as those provided by differential privacy.

Limited-precision local privacy. In this scenario, data set
Y is a D ⇥ V count matrix, where each element y

dv

2 +

in this matrix is the number of times word type v 2 [V ]

occurred in document d 2 [D]. Similar to the community-
detection scenario, a single observation in this data set
might correspond to a single element. In this case, if
y

dv

 N , an adversary would be unable to tell from ỹ

(±)
dv

whether v occurred in d, provided ✏ is sufficiently small.
However, a more natural interpretation would be to as-
sume that a single observation is an entire document—i.e.,
y

d

= (y

d1, . . . , ydV

). In this case, if the `1 norm of the dif-
ference between two documents is N or less, then their pri-
vatized versions will be indistinguishable, provided ✏ is suf-
ficiently small. For example, if N = 4, then the privatized
version of email that includes the sentence “I hate my boss”
will be indistinguishable from that of an email without the
sentence. We note that it is also natural to consider heteroge-
neous document-specific precision levels—i.e., N

d

leading
to ✏

d

= N

d

ln

⇣

1
↵d

⌘

—to enable the author of document d to
choose how much to noise this document before sharing it.
For example, if an author wanted to make sure that an adver-
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sary would be unable to tell that she wrote “surprise party”
five times in an email, she would first set N

d

:= 5 · 2 = 10.
Then, to achieve ✏

d

= 1, she would set ỹ

(±)
dv

:= y

dv

+ ⌧

dv

,
where ⌧

dv

⇠ 2Geo(↵

d

) and ↵
d

= exp (� ✏d
Nd

) ⇡ 0.9.

Poisson factorization. As explained in section 3, latent
Dirichlet allocation (Blei et al., 2003)—a well-known topic
model for text corpora—is a special case of Poisson factor-
ization where Y is a D⇥V count matrix; n = (d, v), where
d 2 [D] and v 2 [V ]; Z = {⇥, �}, where ⇥ and � are
D ⇥ K and K ⇥ V non-negative, real-valued matrices, re-
spectively; and µ

dv

=

P

K

k=1 ✓dk

�

kv

. The factor ✓
dk

repre-
sents how much topic k is used in document d, while the fac-
tor �

kv

represents how much word type v is used in topic k.
Again, it is standard to assume independent Gamma priors
over the factors—i.e., ✓

dk

,�

kv

⇠ Gamma(a0, b0), where
a0 and b0 are shape and rate hyperparameters, respectively.

Synthetic data. We generated a synthetic data set of D =

90 documents, with K =3 topics and V = 15 word types.
We set �

⇤ so that the topics were well separated, with each
putting the majority of its mass on five different word types.
We also ensured that the documents were well separated into
three equal groups of thirty, with each putting the majority
of its mass on a different topic. We then sampled a data set
y

⇤
dv

⇠ Pois(µ⇤
dv

) where µ

⇤
dv

=

P

K

k=1 ✓
⇤
dk

�

⇤
kv

. We then gen-
erated a heterogeneously-noised data set by sampling the d

th

document’s noise level ↵
d

⇠ Beta
�

c↵0, c (1�↵0)
�

from a
Beta distribution with mean ↵0 and concentration parameter
c = 10 and then sampling ⌧

dv

⇠ 2Geo(↵

d

) for each word
type v. We repeated this for a small and large value of ↵0.
For each model, we ran 6,000 sampling iterations, saving
every 25

th sample after the first 1,000. We selected ˆ

� to be
from the posterior sample with the highest joint probability.
Note that, due to label-switching, we cannot average the
samples of �. Following Newman et al. (2009), we then
aligned the topic indices of ˆ

� to �

⇤ using the Hungarian
bipartite matching algorithm. We visualize the results in
figure 1 where we see that the naı̈ve approach performs
poorly at recovering the topics in the high noise case.

Enron. For these experiments we created a corpus by treat-
ing each sent email in the Enron corpus as a single document.
After removing stopwords we ran latent Dirichlet alloca-
tion (LDA)—a special case of Poisson factorization—using
MALLET (McCallum, 2002) with default settings to obtain
a point estimate of the parameters ✓⇤

dk

and �⇤
kv

. For each of
the most frequently used K =25 topics, we sub-selected the
top 50% of word types v used by the topic and top 5% doc-
uments d that use the topic. The resultant data set included
D=1, 000 documents and V =1, 400 word types. As in the
previous study, we used a semi-synthetic experimental de-
sign to allow us to vary the length and density of documents
and control for model mismatch. In each trial, we generated
a data set y

dv

⇠ Pois(µ⇤
dv

) where we rescaled �⇤
kv

= �

v

�

⇤
kv

and ✓⇤
dk

= �

d

✓

⇤
dk

, allowing �
v

and �
d

to vary across tri-
als. We randomly generated �

d

, �

v

⇠ �(e0f0, f0) for f0 =

0.001 and varying e0. We generated five semi-synthetic data
sets for three values of e0 2 {5, 10, 50} and nine levels of
noise ↵ 2 {0.1, . . . , 0.9}. We applied our method and the
naı̈ve approach to each data set by running 15,000 sampling
iterations and saving every 25

th sample after the first 3,000.
Using these samples we approximated the posterior mean of
µ̂

dv

and calculated the mean KL divergence of the Poisson
distribution implied by µ̂

dv

from the Poisson distribution
implied by µ

⇤
dv

. We include a plot of these results in the
appendix; they tell a similar story to those shown in figure 4.

6. Conclusion and future directions
We presented a general and modular method for privatiz-
ing Bayesian inference for Poisson factorization, a broad
class of models that contains some of the most widely used
models in the social sciences. Our method satisfies local
differential privacy. To formulate our local-privacy guar-
antees, we introduced limited-precision local privacy—the
local privacy analog of limited-precision differential privacy.
Finally, via two case studies, we demonstrated our method’s
utility over a naı̈ve approach, wherein inference proceeds as
usual, treating the privatized data as if it were not privatized.

The key to our method is being able to efficiently sample
values of the non-privatized data. We accomplish this
by introducing auxiliary variables and exploiting special
relationships between the Bessel, Skellam, and Poisson
distributions to obtain a sequence of closed-form condi-
tional distributions for every variable. A straightforward
alternative to our approach is to sample from the unnormal-
ized density PM,R(y

n

, ỹ

(±)
n

| µ

n

) / PM,R(y

n

|ỹ(±)
n

, µ

n

)

using black-box techniques (e.g., rejection sampling). Al-
though this is conceptually simpler, there are many benefits
of closed-formedness. Most importantly, our algorithm
can be easily built on in the future to develop stochastic
inference algorithms for massive data sets. When all
complete conditionals are closed-form exponential families,
there are simple recipes for translating MCMC algorithms
into coordinate-ascent variational inference (CAVI) algo-
rithms (Hoffman et al., 2013). For our method, all complete
conditionals are well known to be exponential families,
except for the Bessel distribution; however, we show that it
is in theorem E below. This allows us to derive a full CAVI
algorithm—we include the derivation of this algorithm in
the appendix and leave for future work the development of
a stochastic version that will scale to massive data sets.

Theorem 6.1. (Proof in appendix.) The Bessel distribution
m ⇠ Bes(⌫, a) for fixed ⌫ is an exponential family with
sufficient statistic T

⌫

(m) = 2m + ⌫, natural parameter
⌘

⌫

(m)=log

�

a

2

�

, and base measure h

⌫

(m)=

1
m! �(m+⌫+1) .
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A. Additional figures
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Figure 5. Mean KL divergence of the Poisson distribution implied by µ̂dv from the Poisson distribution implied by µ⇤
dv; lower is better.

Error bars denote standard deviation across five replications. Each subfigure reports the results across nine values of ↵ (higher values
mean more noise) for a given setting of e0 which controls the sparsity and magnitude of the count observations. As the counts grow larger
and denser, the performance of both private methods approaches the performance of non-private Poisson factorization for small values of
↵. Our method almost always outperforms the naı̈ve approach, with the difference being especially stark at higher noise levels.
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Figure 6. The two-sided geometric distribution (bottom) can be obtained by randomizing the parameters of the Skellam distribution
(top). With fixed paramters, the Skellam distribution can be asymmetric and centered at a value other than zero; however, the two-sided
geometric distribution is symmetric and centered at zero. It is also heavy tailed and the discrete analog of the Laplace distribution.

B. Geometric mechanism
Theorem 2.4. If N is a positive integer and randomized response method R(·) is the geometric mechanism with parameter
↵, then for any pair of observations y, y

0 2 Y ✓ Zd such that ky � y

0k1  N , R(·) satisfies

P (R(y) 2 S)  e

✏

P (R(y

0
) 2 S) (18)

for all subsets S in the range of R(·), where

✏ = N ln

✓

1

↵

◆

. (19)

Therefore, the geometric mechanism with parameter ↵ is an (N, ✏)-private randomized response method with ✏ = N ln (

1
↵

).
If a data analysis algorithm sees only the observations’ (N, ✏)-private responses, then the data analysis itself satisfies
(N, ✏)-limited precision local privacy.

Proof. It suffices to show that for any integer-valued vector o 2 Zd, the following inequality holds for any pair of
observations y, y

0 2 Y ✓ Zd such that ky � y

0k1  N :

exp(�✏)  P (R(y) = o)

P (R(y

0
) = o)

 exp(✏), (20)
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where ✏ = N ln

�

1
↵

�

.

Let ⌫ denote a d-dimensional noise vector with elements drawn independently from 2Geo(↵). Then,

P (R(y) = o)

P (R(y

0
) = o)

=

P (⌫ = o � y)

P (⌫ = o � y

0
)

(21)

=

Q

d

i=1
1�↵

1+↵

↵

|oi�yi|

Q

d

i=1
1�↵

1+↵

↵

|oi�y

0
i|

(22)

= ↵

(

Pd
i=1 |oi�yi|�|oi�y

0
i|)

. (23)

By the triangle inequality, we also know that for each i,

�|y
i

� y

0
i

|  |o
i

� y

i

| � |o
i

� y

0
i

|  |y
i

� y

0
i

|. (24)

Therefore,

�ky � y

0k1 
d

X

i=1

(|o
i

� y

i

| � |o
i

� y

0
i

|)  ky � y

0k1. (25)

It follows that
↵

�N  P (R(y) = o)

P (R(y

0
) = o)

 ↵

N

. (26)

If ✏ = N ln

�

1
↵

�

, then we recover the bound in equation 20.

C. Two-sided geometric noise as exponentially randomized Skellam noise
Theorem C.1. A two-sided geometric random variable ⌧ ⇠ 2Geo(↵) can be generated as follows:

�1,�2 ⇠ Exp(

↵

1�↵

), ⌧ ⇠ Skel(�1,�2), (27)

where the Skellam distribution is the marginal distribution over the difference ⌧ := g1�g2 of two independent Poisson
random variables g1 ⇠ Pois(�1) and g2 ⇠ Pois(�2).

Proof. A two-sided geometric random variable ⌧ ⇠ 2Geo(↵) can be generated by taking the difference of two independent
and identically distributed geometric random variables:3

g1 ⇠ Geo(↵), g2 ⇠ Geo(↵), ⌧ := g1 � g2. (28)

The geometric distribution is a special case of the negative binomial distribution, with shape parameter equal to one (Johnson
et al., 2005). Furthermore, the negative binomial distribution can be represented as a mixture of Poisson distributions with a
gamma mixing distribution. We can therefore re-express equation 28 as follows:

�1 ⇠ Gam(1,

↵

1�↵

), �2 ⇠ Gam(1,

↵

1�↵

), g1 ⇠ Pois(�1), g2 ⇠ Pois(�2), ⌧ := g1 � g2. (29)

Finally, a gamma distribution with shape parameter equal to one is an exponential distribution, while the difference of two
independent Poisson random variables is marginally a Skellam random variable (Skellam, 1946).

D. Relationship between the Bessel and Skellam distributions
Theorem D.1. Consider two Poisson random variables y1 ⇠ Pois(�1) and y2 ⇠ Pois(�2). Their minimum m :=

min{y1, y2} and their difference � := y1 � y2 are deterministic functions of y1 and y2. However, if not conditioned on y1

and y2, the random variables m and � can be marginally generated as follows:

� ⇠ Skel(�1,�2), m ⇠ Bes
⇣

|�|, 2
p

2�1�2

⌘

. (30)
3See https://www.youtube.com/watch?v=V1EyqL1cqTE.

https://www.youtube.com/watch?v=V1EyqL1cqTE
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Proof.

P (y1, y2) = Pois(y1;�1) Pois(y2;�2) (31)

=

�

y1
1

y1!
e

��1
�

y2
2

y2!
e

��2 (32)

=

(

p
�1�2)

y1+y2

y1! y2!
e

�(�1+�2)

✓

�1

�2

◆(y1�y2) / 2

. (33)

If y1 � y2, then

P (y1, y2) =

(

p
�1�2)

y1+y2

I

y1�y2(2

p
�1�2) y1! y2!

e

�(�1+�2)

✓

�1

�2

◆(y1�y2) / 2

I

y1�y2(2

p

�1�2) (34)

= Bes
⇣

y2; y1 � y2, 2
p

�1�2

⌘

Skel(y1 � y2;�1,�2); (35)

otherwise

P (y1, y2) =

(

p
�1�2)

y1+y2

I

y2�y1(2

p
�1�2) y1! y2!

e

�(�1+�2)
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◆(y2�y1) / 2

I
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�1�2) (36)

= Bes
⇣

y1; y2 � y1, 2
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�1�2

⌘

Skel(y2 � y1;�2,�1)

= Bes
⇣

y1; �(y1 � y2), 2
p

�1�2

⌘

Skel(y1 � y2;�1,�2). (37)

If
m := min{y1, y2}, � := y1 � y2, (38)

then

y2 = m, y1 = m + � if � � 0 (39)
y1 = m, y2 = m � � otherwise (40)

and
�

�

�

�

@y1

@m

@y1

@�

@y2

@m

@y2

@�

�

�

�

�
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1 1

1 0

�

�

�

�

��0 �
�

�

�

1 0

1 �1

�

�

�

�

�<0

= 1, (41)

so

P (m, �) = P (y1, y2)

�

�

�

�

@y1

@m

@y1

@�

@y2

@m

@y2

@�

�

�

�

�

= Bes
⇣

m; |�|, 2
p

�1�2

⌘

Skel(�;�1,�2). (42)

E. Coordinate-ascent variational inference
Theorem 6.1. The Bessel distribution m⇠Bes(⌫, a) for fixed ⌫ is an exponential family with sufficient statistic T

⌫

(m)=

2m+⌫, natural parameter ⌘
⌫

(m)=log

�

a

2

�

, and base measure h

⌫

(m)=

1
m! �(m+⌫+1) .

Proof. The Bessel distribution (Yuan & Kalbfleisch, 2000) is a two-parameter distribution over the non-negative integers:

f(n; a, ⌫) =

�

a

2

�2n+⌫

n! �(n+⌫+1)I

⌫

(a)

, (43)

where the normalizing constant I

⌫

(a) is a modified Bessel function of the first kind—i.e.,

I

⌫

(a) =

1
X

n=0

�

a

2

�2n+⌫

n! �(n+⌫+1)

. (44)
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For fixed and known ⌫, we can rewrite the Bessel PMF as

f(n; a, ⌫) =

1

n! �(n+⌫+1)

exp

⇣

(2n+⌫) log

⇣

a

2

⌘

� log I

⌫

(a)

⌘

. (45)

We can then define the following functions:

h

⌫

(n) =

1

n! �(n+⌫+1)

(46)

T

⌫

(n) = 2n + ⌫ (47)

⌘

⌫

(a) = log

⇣

a

2

⌘

(48)

A

⌫

(a) = log I

⌫

(a). (49)

Finally, we can rewrite the Bessel PMF in the exponential-family form:

f(n; a, ⌫) = h

⌫

(n) exp (⌘

⌫

(a) · T

⌫

(n) � A

⌫

(a)). (50)

We can derive a full coordinate-ascent variational inference (CAVI) algorithm for locally private Poisson factorization. For
exposition, we focus on latent Dirichlet allocation, where y

dv

⇠ Pois(µ
dv

) and µ

dv

=

P

K

k=1 ✓dk

�

kv

. It is standard to
assume independent gamma priors over the factors—i.e., ✓

dk

,�

kv

⇠ �(a0, b0). We use [X] = exp ( [ln X]) to denote
the geometric expected value of X .

E.1. Q(✓

dk

), Q(�

kv

)

The optimal variational distribution for the factors is same as in non-private Poisson factorization (Cemgil, 2009).

Q(✓

dk

) /
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[P (y

dk
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dk

| �)] (51)

=
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(52)
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dk

; ↵

dk

, �

dk

) (53)
↵

dk

:= a0 +

Q

[y

dv

] (54)

�

dk

:= b0 +

V

X
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] (55)

Q

[✓

dk

] =

↵

dk

�

dk

(56)

Q

[✓

dk

] = exp ( (↵

dk

) � ln(�

dk

)) . (57)

The derivation for �
kv

is analogous.

E.2. Q

⇣

m

dv

, ỹ

(+)
dv

, g

dv1, gdv2, ydv

, (y

dvk

)

K

k=1

⌘

The relationships between the different count variables are as follows:
 

K

X

k=1

y

dvk

!

| {z }

=ydv

+g

dv1

| {z }

=ỹ

(+)
dv

�g

dv2

| {z }

=ỹ

(±)
dv

(58)

m

dv

= min

n

ỹ

(+)
dv

, g

dv2

o

(59)

We have a single variational distribution for these variables.
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E.3. Different factorizations of the joint

To find this variational distribution, we consider the variables’ joint distribution:

P

⇣

g

dv1, gdv2, (ydvk

)

K

k=1 , y

dv

, ỹ

(+)
dv

, ỹ

(±)
dv

, m

dv

⌘

. (60)

The most straightforward factorization of this joint first generates all the Poisson random variables and then computes the
remaining variables given their deterministic relationships to the underlying Poissons:

P

⇣

g

dv1, gdv2, (ydvk

)

K

k=1 , y

dv

, ỹ
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dv
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, m

dv

⌘

= Pois(g
dv1;�dv1) Pois(g

dv2;�dv2)

 

K

Y

k=1

Pois(y
dvk

; ✓

dk

�

kv

)

!  

y

dv

=

K

X

k=1

y

dvk

!

⇣

ỹ
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dv
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m

dv

= min{ỹ

(+)
dv

, g

dv2}
⌘

. (61)

We can equivalently first generate the sums of Poissons and then thin them using multinomial and binomial draws. In the
following equation, the delta functions are implicitly present in the multinomial and binomial PMFs. Note that we write the
probability parameters in the multinomial and binomial PMFs as unnormalized vectors. Also note that µ

dv

=

P

k

✓

dk

�

kv

.
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We can equivalently first generate the difference ỹ

(±)
dv

and minimum m

dv

as Skellam and Bessel random variables. Con-
ditioned on these variables, we can then compute ỹ

(+)
dv

and g

dv2 via their deterministic relationship and, finally, thin ỹ

(+)
dv

using binomial and multinomial draws:
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It is this last factorization that enables us to derive the variational distribution.

E.4. Deriving the variational distribution

Recall that the observed data consists of the difference variables ỹ

(±)
dv

.
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Because the likelihood (i.e., the Skellam term) in equation 63 does not depend on any of these latent variables, it disappears
entirely. We can then rewrite the right-hand side of equation 64 as:

Q

h

P (m

dv

, ỹ
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ỹ

(+)
dv

= m

dv

⌘ (ỹ(±)
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Theorem 6.1 states that the Bessel distribution for fixed first parameter is an exponential family. We can therefore use
standard results to push in the geometric expectations:
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ỹ

(±)
dv

= ỹ
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There are two expectations that do not have an analytic form:
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and
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] = exp
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; (68)

however, both can be very closely approximated using the delta method (Ver Hoef, 2012) which has been previously used in
variational inference schemes to approximate intractable expectations (Braun & McAuliffe, 2010; Wang & Blei, 2013). In
particular, for some variable Y = f(X), expectation [Y ] is approximately:

[Y ] = [f(X)] ⇡ f ( [X]) +

1

2

f

00
( [X]) [X]. (69)

On our case, we therefore have
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Finally, because ✓
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are independent, we have
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