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1 Introduction

Political campaigns in recent elections have started to embrace friend-to-friend organizing, in which volunteers
organize and encourage their own close contacts to cast a ballot on Election Day. Unlike traditional “get
out the vote” (GOTV) campaigns, which often rely on texts, calls, or visits from strangers, friend-to-friend
organizing is premised on the notion that GOTV encouragements are especially effective when delivered by
trusted messengers, like friends or family members.

A recent RCT by Schein et al. found large treatment effects of friend-to-friend text-message reminders to
vote in the 2018 U.S. midterm elections: CACE = 8.3,CI = (1.2,15.3). This study is the first large-scale
experiment to assess the causal effects of friend-to-friend GOTV tactics. A smaller experiment that assessed
a friend-to-friend GOTV tactic in the lead-up to the 2019 municipal elections also found large effects [Green
and McClellan, 2020]. These results are tantalizing; however, more experimental evidence is necessary to
meaningfully compare friend-to-friend tactics to traditional GOTV tactics whose effects have been repeatedly
assessed and replicated through two decades of field experiments [Green and Gerber, 2019].

In this paper, we report a follow-up study to that of Schein et al. which we conducted on the same mobile-app
platform, Outvote®, during the 2020 U.S. presidential election. Our study estimates smaller treatment
effects—CACE = 2.21,CI = (—2.30, 6.72)—of friend-to-friend text-message reminders during the 2020
election. We additionally use the data from Schein et al. to estimate the effect that Outvote messages from
2018 had on voter turnout in the 2020 election and find an effect of CACE = 5.63,CI = (—0.98,12.24). Taken
together, this new evidence is consistent with moderate treatment effects of friend-to-friend encouragements
on turnout in 2020—however, this evidence likely rules out effects in 2020 as large as those found in 2018
and does not rule out null effects (see Fig. 1). Whether these new results should temper excitement about
friend-to-friend tactics is debatable. It is generally assumed that treatment effects of GOTV tactics during
Presidential elections will be weaker than those during midterms due to ceiling effects from higher baseline
turnout, and this may be particularly true for 2020, which had record-high turnout.

The main technical challenge this paper addresses is how to assess causal effects using instrumental variables
that are naturally ordinal Q; € {1,2,..., L;} and whose maximum possible level Q; differs across subjects,
possibly endogenously. This challenge arises naturally from our experimental design, which is different from
that of Schein et al.. That design relied on randomly “skipping” contacts in users’ queues with a small (5%)
probability; our new design relies instead on randomizing the order in which users are presented the contacts
in their queue. Our estimation strategy relies on automatically selecting a cutoff K and binarizing the ordinal
queue positions to obtain binary instruments—Z; = 1(Q; < K)—while also controlling for the confounding
effect of queue length L; using inverse propensity weights.

2 Experimental design

Setting. The mobile app Outvote provides a streamlined platform for users to message their close contacts
with encouragements to vote. The app works in stages. In the first stage, the user creates a queue of contacts
they intend to message. After creating a queue, the app then takes the user to a messaging interface for the
first contact in the queue, where the user is provided a default message that they can either edit or send as
is. After hitting “Send”, the app then takes the user to a new messaging interface for the next contact on
their queue. The user is also able to "Skip" a contact without messaging them.

IThe app was renamed to Impactive (www.impactive.io) prior to 2020 but we refer to it as Outvote be consist with existing literature.
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Figure 1: We estimate weaker treatment effects of friend-to-friend text messages on turnout in the 2020 presidential
election than those previously estimated for turnout in the 2018 midterms. The effects estimated by Schein et al. of
texts from 2018 on turnout in 2018 is denoted by the blue square (M). The two new effects this paper reports on turnout
in 2020 are denoted by circles (¢). While these are consistent with moderate effects on turnout in 2020, both
confidence intervals include zero and thus do not rule out null effects, while the confidence interval for the effect of
texts in 2020 (bottom) does not overlap with the upper half of the confidence interval for 2018 texts on 2018 turnout,
likely ruling out the same large effects in 2020.

Randomization. Starting on September 21° and lasting through Election Day on November 3, 2020, the
app randomized the order of contacts in users’ queues. This design was premised on the assumption that
many users would create long queues and exit the app before messaging everyone on them. Names that were
randomly sorted to the end of queues thus had lower probabilities of receiving the treatment.

Study population. We consider subjects to be anyone who 1) was queued by a user during the study period,
2) was confidently? matched to the TARGETSMART voter rolls database, and 3) did not vote early or absentee
prior to being queued. A total of n = 81,204 subjects meet these conditions. The first two conditions were
also applied by Schein et al.. The third is new to this study and necessary since a record number of individuals
voted early and absentee in the 2020 election to maintain social distance during the pandemic, among other
reasons. Individuals who voted before being queued are essentially “negative controls”—i.e., we know a
priori the treatment cannot affect their 2020 voting outcome. We note that although it was particularly
pertinent in 2020, the same filter could be applied to any GOTV field experiment for which the date on which
a ballot was cast is recorded.

3 Assessing causal effects

What were the causal effects of OUTVOTE users’ messages on their friends’ voting outcomes in 2020?

Let ¥; € {0,1} denote subject i’s recorded voting outcome and D; € {0, 1} denote whether i received the
treatment—i.e., a message from an OUTVOTE user during the study period. We want to assess causal effects
and thus also define subject i’s potential outcomes, Y;; and Y;y, which denote whether i would vote if they
did or did not receive the treatment. The causal effect of the treatment on i is then Y;; —Y;,. Since D; was
not randomized, the average causal effect E[Y;; — Yj,] is not identified. However, we can use the randomized
queue order to define binary instrumental variables that identify local average causal effects.

Let Q; € {1,2,..., L;} be the position of subject i in their first queue and L; be the length of that queue. Since
we randomized the order of queues, Q; could be considered an ordinal instrument whose levels depend on
length: P(Q; =q|L;) = Li_l. Angrist and Imbens [1995a] show that a weighted average of local average causal
effects is identified by data of binary outcomes, binary treatments, and categorical (or ordinal) instruments,
and Angrist and Imbens [1995b] show that two-stage least squares (2SLS) consistently estimates it. Tan [2006]
and Ogburn et al. [2015] also study local average effects identified by ordinal instruments. However, these

2We obtained ancillary data from PREDICTWISE (www.predictwise.com) and consider a contact to be confidently matched if
OUTVOTE’s matching system matched them to the same voter record in the TARGETSMART database as PREDICTWISE’s system. This is the
same measure taken by Schein et al. to mitigate attenuation bias stemming from measurement noise. We find that a similar proportion
(around 30%) of subjects are confidently matched in this dataset.
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approaches are difficult to apply directly in our case due to the presence of positivity violations—i.e., not all
subjects have a non-zero probability of taking all observed queue positions since P(Q; > q) = 0ifq > L;.

For simplicity and to guarantee positivity, we instead define binary instrumental variables based on some
cutoff K—Z; = 1(Q; £ K)—and only consider subjects in queues with lengths L; > K. Thus, P(Z; =1|L; >
K) =K/L;. With binary instruments, the complier average causal effect is identified,

CACE =E[Y;; —Yio|Dio < Dir], (D

where D;; is subject i’s potential receipt denoting whether they would receive a message if they were before the
cutoff (Z; = 1) and D;, denotes whether they would receive a message if they were after (Z; = 0). The subjects
for whom D;, < D;; are called “compliers”—they only receive a message if they are before the cutoff. An assump-
tion necessary for identification is “monotonicity,” which stipulates that there are no “defiers” for whom D;, >
D;;. Intuition suggests that no subjects would get messaged only if they appeared after some cutoff.

Since P(Z; = 1| L;) differs across subjects we control for L; as a confounder using backdoor adjustment in
the numerator and denominator of the Wald estimator,

— Zep(Li:E)(E[Yi|Zi=LLize]_E[Yi|Zi=O;Li=€])
CACE = > (2)
> P(L;=0)(E[D;|Z,=1,L; = ]—E[D;|Z, = 0,1, ={])

where P(L; = {) is the proportion of subjects in queues of length £. Note that the numerator is the inverse
probability weighted estimator of the intent-to-treat effect while the denominator is the inverse probability
weighted estimator of the first stage.

To select the cutoff K, we consider three trade-offs. First, different cutoffs yield different proportions of compli-
ers, as estimated by the denominator in Eq. (2). A low compliance rate increases the variance of estimates and
limits their generalizability. Second, since subjects in queues of length L; < K must be excluded, a higher cut-
off K means a smaller sample size n. Third, cutoffs close to the extremes (e.g., K = 1) will yield an imbalanced
treatment-control split, which degrades precision. To formalize this trade-off, we follow a similar procedure
outlined by Schein et al. to automatically select the cutoff K which minimizes the expected standard error of the
estimator—specifically, for every possible value of K, we plug in the induced compliance rate, n, and P(Z; = 1)
to a proxy for the expected error (which does not depend on Y;) and select the value that minimizes it.

Results. The procedure outlined above selected K = 37 corresponding to a sub-sample of n = 43, 265 subjects
with L; > 37. We compute the estimator in Eq. (2) on this sub-sample and find an effect of 4.18 (SE=3.13)
percentage points. We then recursed by applying the same procedure to the excluded subjects with L; < 37.
The procedure selected K = 4, corresponding to a sub-sample of n = 33,089 and an estimated CACE of -2.00
(SE=6.10). Recursing once more, the procedure then selected K = 1 on the excluded subjects, corresponding
to all remaining subjects and an estimated CACE of 0.74 (SE=4.07). To summarize these three estimates
on the three automatically selected disjoint sub-samples, we computed a precision-weighted average which
yields an overall estimate of CACE = 2.21 (SE=2.30) percentage points, as shown in Fig. 1.

4 Robustness check

As a robustness check, we re-analyze the data using a different way of deriving subjects’ binary treatment
assignments Z; € {0, 1} from their ordinal queue positions Q; € {1,2,...,L;}. In this analysis, we operate
on subjects’ normalized queue position Q; = Q;/L;, which represents the percentile rank of subject i in their
respective queue. Unlike raw queue position, this quantity is bounded on the unit interval, Q; € [Lil_, 1].
As before, we then use some cutoff K € (0, 1) to define binary treatment assignments based on percentile
rank, Z; = 1 if Q; < K. Thresholding on percentile rank versus thresholding on raw queue position represent
two different models of user behavior. Thresholding on raw queue position presupposes that users tend to
abandon the app after messaging a certain number of contacts, regardless of how many contacts they queued.
Thresholding on percentile rank presupposes that users abandon the app after messaging a similar percentage
of the contacts in their queue.



Queue bin B; Queue lengths L; Description n subjects Selected cutoff K CACE

1 2,...,6} “micro” 9,043 0.84 12.83 (SE=9.22)
2 {7,...,19} “short” 14,770 0.41 -8.54 (SE=9.18)
3 {20, ..., 53} “medium” 22,464 0.36 -4.52 (SE=6.12)
4 (54, ..., 147} “lengthy” 21,728 0.42 -0.30 (SE=4.06)
5 {148, ...,402}  “long” 10,176 0.23 7.27 (SE=4.46)
6 {403, ...} “spammy” 3,023 0.20 7.77 (SE=8.66)

Table 1: This analysis partitions subjects into mini-experiments according to similar queue lengths. The mapping we use is
the log-transform of queue length, B; = |log(1 + L;)].

The previous analysis automatically partitioned the subject pool into mini-experiments, with each having an
optimally-selected cutoff K that defines subjects’ treatment assignments. In this analysis, we instead partition
the subject pool ahead of time into mini-experiments, each involving subjects in queues of similar lengths.
The reason we do this is to capture the fact that a percentile cutoff of K = 0.1 has a substantially different
qualitative interpretation in a queue of length L; = 10 versus a queue of length L; = 1,000. A natural
way to bin subjects according to queue length is to use the following log-transform B; = [log(1 + L;)|. This
transformation creates an interpretable mapping of queue lengths to bins that we describe in Table 1.

For each bin, we select an optimal cutoff K using the procedure outlined in the previous section, which trades
off the different levels of compliance, different levels of imbalance in the treatment-control split, and different
overall sample sizes implied by a selected K.

Results. For the 1st bin of subjects in “micro” queues, the above procedure selects K = 0.84. We provide the
selected cutoffs for all other bins in Table 1. The general trend is that earlier cutoffs are selected for longer
queues lengths, which makes sense if users rarely message past a certain number of contacts, regardless of
queue length. We also report the estimated CACE and standard errors for each bin in Table 1. As before,
to summarize these effects, we take a precision-weighted average. This yields an overall estimate of CACE
= 2.17 (SE=2.40), which is similar to the estimate from the previous analysis.

5 Discussion

Results from 2020 suggest a smaller CACE than corresponding results from 2018. One interpretation is that
GOTV campaigns are less influential in high-salience elections. Using the formulas from Corollary 1 of Aronow
and Green [2013], we find that untreated compliers in each of the six bins in Table 1, have implied turnout
rates ranging from 74% to 97%, which are all substantially higher than the 67% estimated by Schein et al.
in the 2018 study. It remains to be seen whether, in line with this interpretation, results in 2022 resemble
the large 2018 estimates.
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